
LIGHTS, CAMERA, ACTION! VIDEO DELIVERABLES FOR

PROGRAMMING PROJECTS *

Christa Chewar and Suzanne J. Matthews
Department of Electrical Engineering & Computer Science

United States Military Academy
West Point, NY 10996
845-938-55{62, 77}

{christa.chewar, suzanne.matthews}@usma.edu

ABSTRACT

Student-produced video deliverables describing their software development
projects are a pedagogical option made practical by the prevalence of
smart-phones and tablets in the modern classroom. We describe various uses
of video deliverables in software development courses within our computer
science program. We discuss insights based on our experience over two years,
and present “Best Practice” recommendations, which may be useful for anyone
interested in incorporating similar practices in their own programming courses.
Overall, we have found that video deliverables provide many benefits and
efficiencies for students and faculty alike.

INTRODUCTION

Within the fields of computer science and engineering, much research has gone into
exploring the utilization of video in the classroom. The majority of existing research
concentrates on the creation of instructor-produced artifacts, such as lecture recordings
[4,5,6,8,13,14,15,17], screen/podcasts [13,14], and visualizations [9]. Despite a
prevalently positive view of the impact of instructor-produced video and related
visualizations on student education, the experimental body of evidence suggests that the
passive consumption of video lectures is of limited benefit [6, 8, 9, 15]. Video lectures

* Copyright © 2015 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

8

CCSC: Eastern Conference

are useful to students who miss or are unable to attend lessons in person [15]. However,
there seems to be a growing consensus of the importance of student engagement in the
process of creating artifacts [9, 12]. When students create artifacts, they gain deeper
insight into the processes being explored and develop a greater sense of responsibility for
their learning [9, 12].

For the past two years, we have enthusiastically embraced a practice of requiring
video deliverables for many programming projects within our Computer Science
program. We define a video deliverable as a student-produced video artifact that is
required for some graded event. Where students would previously submit only their code
(and perhaps a short report) as the graded deliverables for programming projects, we have
typically revised requirements to focus students on producing a short video demonstrating
the program in use. Source code is still turned-in, with the expectation that it produces
the same results seen in the video-but, the emphasis is on the video.

Our pilot efforts in requiring video deliverables were born from frustration with
grading student programming projects, especially those which involve significant
environment configuration to achieve a functional system. Applications that make use
of device or API features such as sensors or location services require additional context
to fully assess. Security concerns bring additional challenges with safely building student
code. Even after time is taken to rebuild a student's project and situate it in an appropriate
usage context, non-intuitive user interface design can mask otherwise solid development
work that is difficult to grade exclusively through code review.

While live demos present another option for grading programming projects, we
often feel overly constrained with the classtime available to accomplish all assessment.
In high enrollment courses, live demos are often impractical, robbing students of the
valuable experience to organize and communicate their projects to their classmates. Live
demos are also notoriously catastrophic, especially for introductory level students who
cannot resist the temptation to make a final improvement that results in an
insurmountable compiler error. Lastly, students are generally terrible at predicting how
long a presentation will take, and have poor time management when presenting. This can
eat into valuable presentation time of other students. We also notice that students often
felt that those who presented in a later time-slot had a greater advantage, having observed
the presentations given previously by their peers.

We were also inspired by the success stories from courses in other disciplines that
require students to produce video artifacts. In engineering [1] and business [2], educators
found that requiring students to create podcasts encouraged students to develop desirable
technological skills, and required greater levels of communication and team-work than
oral presentations [2]. In a nursing program [11], students were asked to video their oral
presentations about different techniques in medical diagnosis, and then perform peer
assessment of their colleagues' videos. Students rated the exercise as being highly
valuable, with the highest rated aspects being teamwork and collaborative assessment
[11]. Studies of the use of student-created videos in obesity stigmatization [16], or
chemistry labs [10] where students either reflect on describe a central process, found that

9

JCSC 31, 3 (January 2016)

students displayed a deeper level of learning while developing valuable auxiliary
communication skills.

In this paper, we discuss our efforts in incorporating video deliverables into various
software development courses in our computer science program. We discuss insights
based on our experiences, and present “Best Practice” recommendations, which may be
useful for anyone interested in incorporating video deliverables in their own
programming courses. Our experience suggests video deliverables provide many benefits
for both students and faculty. In the future, we plan to further explore how to better
integrate video deliverables in all aspects of our computing curriculum.

METHODS FOR INTEGRATING VIDEO

We integrate video deliverables into four computer science courses that emphasize
software development. These four courses are taken by undergraduate computer science
students at all levels: freshmen and sophomores in their introductory computing course;
mid-level students learning advanced programming concepts in a required course and in
an elective; and seniors building a complex software system as part of their capstone
requirements. In addition, the introductory course and capstone course are taken by other
majors in the department, including electrical engineering and information technology
majors, who were also required to turn in video deliverables.

Requiring video deliverables of our students was a relatively easy task. All students
at our university are required to purchase a laptop and a tablet computer, both which
come with video recording hardware. We point students toward free software, such as
ScreenCast-O-Matic (http://screencast-o-matic.com) and the Windows MovieMaker
video editing tool. While most students chose to produce screencasts (where the video
focused on a screen, rather than an individual), many students found creative ways to
incorporate skits or themselves into the presentations. Our video deliverable integration
efforts in each of our four courses are summarized below:

CS1 - Introduction to Computer Science: This first course in the major introduces
students to concepts such as modular design, problem solving strategies and basic data
structures. In the final weeks of the course, students are required to implement an
open-ended project with instructor approval. In previous semesters, we were plagued by
delays mainly caused by students who laptops (or programs) “inexplicably” stopped
working at their allotted presentation time. Video deliverables ensured that there was a
working demo the day of presentation, allowed us to increase the number of presentations
that can occur in a given day, and greatly reduced the amount of stress in the process. We
post the videos on our class YouTube channel, where students can “like” or comment on
them.

Object Oriented Concepts: A major course objective in this third programming
course is a semester-long project that follows a test-driven development paradigm.
Students create a simulation of a four player turn-based game of their choice. The
autonomous players can be dynamically assigned various strategies, but move decisions

10

CCSC: Eastern Conference

are always predictable and therefore testable. Once the graphical elements of the game
take form, students use a series of video demos to show basic game play and testing of
strategies, displaying the content and execution of unit tests, and interleaving integration
tests. The videos clearly demonstrate a student's competency with predicting execution
results of every user command, comparing actual program results, and identifying
deficiencies.

Android Programming: This elective available to CS majors involves a substantial
development project, where students create or extend an Android app that allows a user
to interact with web services and a database backend. The major project deliverable is
a video walk-through of the system, intended for another student that is new to Android
and web development. The walk-though demonstrates all parts of the fully functional
system in use, and then explains the most interesting parts of the code developed by the
student. Within several minutes, the viewer sees approximately 1,000 lines of code,
spread across multiple files. The narration explains the responsibilities of major modules
during the application lifecycle, clearly showing the student's level of understanding.

Senior Design Course: All of our computing majors spend two semesters
developing a capstone project in interdisciplinary teams, responding to the needs of real
stakeholders. We follow an Agile Scrum approach using three week “Sprints,” which
requires students to produce a minimal product immediately, and continuously add
features as requirements evolve. At the end of each Sprint, students submit a 10-15
minute video that demonstrates all current progress, reflects on stakeholder reaction, and
proposes the work for the upcoming Sprint. Sprint reviews generally provide an excellent
synchronization point for all team members, instructors, and advisors-having these in a
video format allow comparison between teams, richer product demos, and
asynchronous/repeated viewing. The smartest students record quick video segments
every work session of results achieved, which they also use for internal daily “standup”
updates. By the end of the year, each project accumulated approximately two hours of
high quality video, fully documenting project rationale and results. This should be a
valuable resource to next year's teams continuing the projects.

RESULTS

We discovered numerous benefits in using video deliverables for software
development projects. Video deliverables improve student organization and
communication skills, streamline course administration, and facilitate the generation of
artifacts for program-level assessment and reflection. Benefits from each perspective are
discussed in turn. We also present some of the most common challenges we have
encountered in requiring video deliverables for class project work, with the mitigations
we have used. At this point, all observations are informal and anecdotal, but grounded
in our experience.

11

JCSC 31, 3 (January 2016)

Student Benefits

Video deliverables improve student communication and time management skills.
Student outcomes for computing sciences typically include effective communication with
diverse audiences, and effective time management. Video deliverables force students to
better organize and prepare their thoughts. For a video product, our students often require
about an hour after coding is complete to write a script, prepare visual aids, practice
narration, edit, and upload the final video. As a result, students procrastinate less and
avoid last-minute efforts that often lead to unfortunate code errors. We also find that
requiring students to take the extra time to create video artifacts helps them recognize the
“big picture” aspects of their projects, rather than merely producing working code.

Video deliverables enable student peer evaluation and self reflection. Video artifacts
enable us to provide examples to students of “good” and “bad” demonstrations. Unlike
oral presentations, video artifacts can be replayed. This enables students to have a frame
of reference as they work to improve their own communication skills. A collection of
such artifacts also enables the creation of video-based electronic portfolios that students
can use to highlight their undergraduate programming accomplishments.

Video artifacts enhance continuity with future teams of students working on
multi-year projects. When students working on a current iteration of a project watch video
produced by previous students, they have the opportunity to more deeply understand the
motivations behind a design decision, or hear how a program works in the voices of the
developers themselves. This is very valuable, as it's often impractical for current students
to contact alumni students who worked on a project and ask about the reasoning behind
certain design decisions. This is also preferable to the written manuals that we ask
students to produce before they wrap up a project, which tend to contain insufficient
detail.

Benefits to Course Adminstration

Video deliverables streamline course administration. Live demos are often infeasible
in courses with large number of students or overly complex setup requirements. For
example, grading student projects that integrate a web service, database, and an Android
application requires a suitable platform to build the project, specific emulator settings or
a compatible device to test the app, and authentication using with multiple user roles to
appreciate the features.

Video deliverables for these types of projects help us avoid issues associated with
environment set up and project building for grading or program assessment, especially
when there could be security concerns with students' files or version incompatibilities.
Setup and tear-down times required for live demonstration are eliminated, increasing the
number of student demos that can be shown in class. If all the videos cannot be shown
during class hours, we randomly share a collection of the video artifacts. The instructor
and students can watch the remainder of video artifacts outside of class. Since all videos
are turned in at the same time, it also removes worries that students presenting later gain

12

CCSC: Eastern Conference

unfair advantages by seeing peers present work first.

Video deliverables facilitate more detailed instructor feedback. We also found that
video deliverables permit us to give more accurate and robust feedback (“your statement
at 1:43 is incorrect”). Replaying videos and observing student behavior during the video
also helps increase an instructor's confidence when assessing an individual student's level
of knowledge and engagement with the project.

Program-Level Benefits

Video deliverables create valuable assessment artifacts for Computer Science
programs. Accreditation processes often require computer science programs to produce
artifacts that provide evidence of enabling the stated student outcomes. Without providing
reviewers with a means to quickly appreciate scope and quality of student products, it's
difficult to use student software development efforts for assessment purposes. Video
deliverables can be used for assessment of embedded indicators and act as samples of
student work. This process becomes easier as assessment materials are organized and
distributed digitally. Our department used these artifacts in our last ABET evaluation
cycle.

Video deliverables are useful for benchmarking student success across semesters.
Changes in development environments and software libraries can make student code
difficult to rebuild after several years, making it challenging to directly compare software
products that result from project work. However, video demos can avoid this altogether,
allowing easy benchmarking of metrics such as “here's what students can typically create
after one semester learning how to program” or “here's how students performed software
testing.” Video artifacts can also be used during recruiting events to inspire future
generations of students. Some students in the most recent semesters of CS1 report that
they enrolled in the course after being inspired by some of the project videos made by
students in previous semesters.

Challenges & Mitigations

Being required to produce video deliverables has caused some angst and
apprehension among students, especially since many students had never prepared a video
as a graded class requirement. Over a few semesters, we collected a list of the most
common negative reactions from students. This is summarized in Table 1, along with the
suggestions we offer in response to mitigate the student's concern. There are certainly
some other challenges for instructors related to video deliverables that we have overcome,
but presentation of these is left for the “best practices” collection.

13

JCSC 31, 3 (January 2016)

Table 1. Student-centered challenges with using video deliverables, with suggestions
for mitigating.

Challenge Mitigations

students don't like to see/hear
themselves

 • captions can often be just as
effective as narration

 • students can be allowed to write
the script for narration, which is
read by a friend for the video

 • encourage students to keep the
camera on the product, not
themselves

students may dislike the process of
making a video

 • having multiple courses within an
academic program use video
deliverables increases the “value”
of learning basic videography

 • include a “Getting Started” guide
resource on class websites, linking
to free screen recorders/editing
software

students may be confused what a good
video looks like

 • have a few examples of effective
and ineffective videos, with a few
notes highlighting positive and
negative aspects

 • use some classtime to allow
students to watch and react to each
other's videos

CONCLUSIONS & FUTURE WORK

As popularity of devices such as smart-phones, laptops and tablets soar, it becomes
very likely that all students have a readily accessible high-quality video recording device.
The ubiquity of this hardware along with freely available video software makes it easier
than ever before for students to create video artifacts.

Spurred by the limitations of oral presentations and the success stories of
student-created video artifacts in other fields, we injected video deliverables in various
computer science courses at our university. While integrating video was not without its
challenges, the many benefits we observed easily compensate. Our students grew leaps
and bounds as communicators and had a better ability to appreciate the “big picture” view
of the projects when asked for video deliverables. These artifacts also gave students an

14

CCSC: Eastern Conference

opportunity to watch themselves and their peers academically mature over the course of
several semesters. As faculty, we found video deliverables were also valuable for
assessment and recruiting purposes.

Based on our two years of experience with integrating student video requirements
into programming courses, we have collected the following list of “best practices.”

 • Introduce tools. Spend just a few minutes of class time introducing a few tool
options, such as a free screen recorder utility and perhaps an editing tool. A
completely inexperienced student can become confident with screen recording in a
few minutes of practice.

 • Discuss content expectations. Provide guidance on exactly what students should
show in the videos. Certainly, seeing the working program or system is important,
but should they show and/or explain the code? What about testing? Should the
video be a recording of the product, or of the presenting the product? Should they
be drawing on a blackboard or a piece of paper, or talking with refined visuals?
Showing examples of “good” and “bad” videos is very useful here.

 • Coach effective recording techniques. Give clear guidance to counteract common
challenges students face in recording. While recording a program displayed on an
external screen is possible with a phone/tablet, this technique requires special
attention to ensure adequate focus on text (zooming both really helps). If text
cannot be read on the phone/tablet's screen during the recording, it is unlikely to be
readable in the video. Angling the recording device differently than the external
screen should also be avoided.

 • Discourage inappropriate showmanship early. Train students to keep the camera
mostly focused on products, not “talking heads” or unrelated images. Gimmicky
transition effects can consume a lot of a student's time without adding any content
value.

 • Specify video format and maximum resolution. This is especially useful if videos
will be presented in class on a single computer. We commonly request the MP4
video format and 720p maximum resolution. While YouTube reduces resolution of
uploaded videos, larger videos take longer to upload.

 • Keep it short. Five minutes is plenty of time for simple demonstrations, but even
two minutes can be quite effective. Ten minutes works well for a full code
walkthrough and functionality demo of a moderately complex system. Up to fifteen
minutes of video is generally useful for a team's Sprint review (representing
approximately three weeks of work).

 • Submit files, not links. Have files on-hand to ensure later accessibility. If students
are simply allowed to upload videos to their own YouTube channel, they may later
delete them. This eliminates the ability for these artifacts to be used in future
assessment or reflection efforts.

 • Require “credits” at the end of a video. Students should acknowledge assistance,

15

JCSC 31, 3 (January 2016)

not only with the project, but also with the video production. Credits should clarify
permissions and/or fair use in an educational setting of any music/visuals that were
not the student's own work.

In the future, we plan to explore how to integrate video deliverables into electronic
portfolios. While electronic portfolios [3,7] are certainly not a new idea, the ready
availability of modern video-making software and hardware opens new doors to their
construction. YouTube is certainly a tempting platform to use. However, questions arise
on how best to organize and maintain large collections of videos over several years using
a free YouTube account.

While oral and written communication modes are traditionally exercised in college
programs, communication through recorded video is arguably becoming just as important
for education modules, concept and product demonstrations, and collaboration. We hope
that some of the techniques referred to in this paper will assist other programs in better
integrating video deliverables in their software development courses.

DISCLAIMER

The opinions in this paper are those of the authors and do not necessarily reflect the
opinions of the U.S. Military Academy, or the U.S. Army.

REFERENCES

[1] Alpay, E., Gulati, S., Student-led podcasting for engineering education,
European Journal of Engineering Education, 35 (4), 415-427, 2010.

[2] Armstrong, G. R., Tucker, J. M., Massad, V. J., Achieving Learning Goals with
Student-Created Podcasts, Decision Sciences Journal of Innovative Education, 7
(1), 149-154, 2009.

[3] Arter, J. A., Spandel, V., Using portfolios of student work in instruction and
assessment, Educational measurement: Issues and practice, 11 (1), 36-44, 1992.

[4] Brecht, H., Learning from online video lectures, Journal of Information
Technology Education: Innovations in Practice, 11 (1), 227-250, 2012.

[5] Crook, A., Mauchline, A., Maw, S., Lawson, C., Drinkwater, R., Lundqvist, K.,
et. al., The use of video technology for providing feedback to students: Can it
enhance the feedback experience for staff and students?, Computers &
Education, 58 (1), 386-396, 2012.

[6] Dickson, P. E., Warshow, D. I., Goebel, A. C., Roache, C. C., Adrion, W. R.,
Student reactions to classroom lecture capture, Proceedings of the 17th ACM
annual conference on Innovation and technology in computer science education,
pp. 144-149, 2012.

[7] Lankes, A. M. D., Electronic portfolios: A new idea in assessment, Syracuse,

16

CCSC: Eastern Conference

NY: ERIC Clearinghouse on Information & Technology, 1995.

[8] Manley, E., Urness T., Video-based instruction for introductory computer
programming, Journal of Computing Sciences in Colleges, 29 (5), 221-227,
2014.

[9] Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C.
et. al., Exploring the role of visualization and engagement in computer science
education, ACM SIGCSE Bulletin 35 (2), 131-152, 2002.

[10] McCormack, S., Ross, D. L., Teaching with Technology: Using Websites and
Videos to Increase Understanding of Bacterial Transformation, Science Teacher,
77 (7), 40-45, 2010.

[11] Pereira, J., Echeazarra L., Sanz-Santamaria S., Gutierrez J., Student-generated
online videos to develop cross-curricular and curricular competencies in Nursing
Studies, Computers in Human Behavior, 31, 580-590, 2014.

[12] Stasko, J. T., Using student-built algorithm animations as learning aids,
Proceedings of the twenty-eighth SIGCSE technical symposium on Computer
science education, 29 (1), 25-29, 1997.

[13] Viel, C. C., Melo, E. L., Pimentel, M. G., Teixeira, C. A. C., Presentations
preserved as interactive multi-video objects, Proceedings of the Workshop on
Analytics on Video-Based Learning, 34-37, 2013.

[14] Wan, Z., Fang, Y., The role of information technology in technology-mediated
learning: A review of the past for the future, AMCIS 2006 Proceedings, 253,
2006.

[15] Wieling, M. B., & Hofman, W. H. A., The impact of online video lecture
recordings and automated feedback on student performance, Computers &
Education, 54 (4), 992-998, 2010.

[16] Zahn, C., Schaeffeler, N., Giel, K. E., Wessel, D., Thiel, A., Zipfel, S., Hesse, F.
W. , Video clips for YouTube: Collaborative video creation as an educational
concept for knowledge acquisition and attitude change related to obesity
stigmatization, Education and Information Technologies, 19 (3), 603-621, 2013.

[17] Zhang, D., Zhou, L., Briggs, R. O., Nunamaker Jr, J. F., Instructional video in
e-learning: Assessing the impact of interactive video on learning effectiveness,
Information & Management, 43 (1), 15-27, 2006.

17

