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ABSTRACT
We present a new method to identify malignant cancer-
causing pathogens by analyzing their interactions with the
host protein interaction network. We introduce two new
measurements, core score and moment score that is based
on topological characteristics of the network of host proteins
that interact with the pathogen. We applied these mea-
surement to a data set consisting of the interactions of 135
pathogens and a human protein-interaction network. We
show a strong linear relationship (R2 = 0.90) between the
core score and the probability that a pathogen leads to ma-
lignant cancer in humans and demonstrate, using a decision
tree classifier, that both measurements can be used to cor-
rectly identify pathogens that lead to malignant cancer in
humans with an accuracy of 97%.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
G.2.2 [Graph Theory]: Network problems; H.2.8 [Database
Applications]: Data Mining

General Terms
Theory, Measurement, Experimentation

Keywords
Protein Interaction Networks, Network topology, Pathogens,
Cancer

1. INTRODUCTION
Pathogens (such as viruses and other microbes) are es-

timated to cause 20% of all fatal cancers in humans [15].
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In recent years, much work [1, 9] has been done to study
the role of viruses in causing tumors and malignant cancers.
Most studies involve inducing tumors in animal models, as
it is very difficult to observe viral tumor growth in human
hosts, given the long latency periods for expression.

However, animal models have been limited in their ability
to mimic the pathogenesis of cancer-causing viruses in hu-
mans [1]. There is great potential in leveraging information
gained from human-pathogen protein interaction networks
(PIN) for tracking the lethality of viruses. In silico detec-
tion of cancer causing pathogens can facilitate the process of
creating vaccines. If these diseases were prevented, it would
reduce cancer cases in developing and developed countries
by 26.3%, and 7.7% respectively [15].

Recent analyses of host-pathogen interaction suggest that
pathogens associate with proteins based on the topological
features of the host protein interaction network [13, 14]. We
hypothesize that pathogens interact best with host proteins
containing specific features that enable optimal virulence.
To test this hypothesis, we developed a new quantitative
measurement of pathogens, core score, which is based on the
topological characteristics of the proteins from the host or-
ganism. Based on a study of 135 pathogens interacting with
a human protein interaction network, we not only show that
this measurement has a strong linear relationship with the
probability that the pathogen is cancer-causing in humans
(R2 = 0.90), but also that it can successfully be used to clas-
sify pathogens as cancer-causing (with an accuracy of 97%).
Further, we introduce a second measurement, moment score,
that when considered together with the core score can cor-
rectly classify pathogens as directly cancer-causing (leading
to cancer in humans in a short time span without requiring
additional pathogenic interaction) with an accuracy of 97%.

Our experimental results support the hypothesis that many
pathogens may have evolved to achieve optimal virulence
by interacting with portions of the host protein network
thought to be critical for intra-cellular communication [10].
These results also suggest that the core score may be a useful
metric to rate the lethality of a pathogen.

2. RELATED WORK
There have been many recent studies investigating the sig-



Cancer causing pathogens
Name SC

*Hepatitis B virus 9.075
*Hepatitis C virus 45.170
Human herpesvirus 4 15.430
*Human herpesvirus 5 19.153
Human herpesvirus 8 1.403
*Human immunodeficiency virus 1 61.449
Human papillomavirus type 18 9.520
Human papillomavirus type 16 23.194
Human papillomavirus type 31 1.209
Human papillomavirus type 5 15.431
Human papillomavirus type 58 0.154
Human T-lymphotropic virus 1 9.408

Table 1: Cancer causing pathogens with core scores.
Pathogens that indirectly lead to cancer are denoted
with a star.

nificance of PINs in various organisms; this work has shown
that essential proteins can be determined by network struc-
ture [19], allowed for the modeling of protein interactions [6,
2], helped identify disease-causing proteins [5], and proved
useful in identifying proteins in an organism associated with
cancer [12].

Specifically related to this paper is the recent work ex-
amining the study of pathogenic interaction with host PINs
and the study of the topological characteristics of proteins
that interact with various pathogens [13, 11, 14, 17, 18]. All
of these previous studies have focused on identifying topo-
logical properties of nodes (or sets of nodes) in the host PIN
that are likely targets for pathogenic interaction. This work
differs from these previous studies in that we characterize
the pathogen through analysis of topological properties of
host proteins with which it interacts. Specifically, we are
concerned with identifying if a pathogen leads to malignant
cancer in humans.

3. APPROACH
We utilize the data set of [14] which consists of a human

PIN which consists of 63, 099 host interactions (not includ-
ing self-interactions) over 10, 057 proteins as well as 2, 099
pathogen-host interactions with 416 pathogen proteins be-
longing to 135 pathogens. Using the available literature, we
determined whether or not each pathogen leads to cancer in
humans. These are listed in Table 1. We present a list of
all supporting references for cancer-causing pathogens in the
supplement. Note that some of the pathogens listed, such
as HIV which are highly correlated with cancer, but either
have a long term dormancy period or there is no reported
evidence for direct causation. These are denoted with a star.
The remaining pathogens on the list can be thought of as
directly leading to cancer. In this study, we consider both
types of cancer-causing pathogens. All other pathogens ei-
ther supported by literature as non-carcinogenic or which
lacked reports of carcinogenicity were considered not cancer
causing.

To characterize the pathogens by the topology of the tar-
geted host proteins, we created two new measurements that
are introduced for the first time in this paper: core score (SC)
and moment score (SM ). These measures depend on the de-
gree and shell number of the host proteins which with the
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Figure 1: Example network. The first number repre-
sents the shell number of the node. See the methods
section for a detailed explanation of shell decompo-
sition.

pathogen interacts. The degree of a host protein is simply
the number of other interacting host proteins. An S-core of
a PIN is the maximum sub-graph where each protein is con-
nected to at least S other proteins and the shell number of
a protein is largest value S such that the protein is included
in that S-core. The shell number can be easily determined
using shell decomposition, described in [16] and proceeds as
follows: remove nodes with less than or equal to degree 1 and
assign them a shell number of 1, recalculating degree every
time a node is removed. Repeat this process but for nodes
with less than or equal to degree 2, assigning them shell
number 2. Then this process is repeated for nodes with less
than or equal to degree 2, assigning them shell number 2.
This process is continued until all nodes have are removed
and have a shell number. For a given shell S, we define its
moment 〈kS〉 be the moment (average degree) of nodes in
that shell. Figure 1 shows an example shell protein network
with a pathogen interaction.

Hence, the core score and moment score are calculated as
follows: For a given pathogen P let Pinteract be the total
number of proteins in the host that P interacts with. For
given shell S let Pinteract(S) be the number of pathogen
interactions with shell S. For shell S, let size(S) be the size
(number of nodes in) shell S. Core score and moment score
are defined in equations 1 and 2 below:

SC =
∑
S

S · Pinteract(S)

size(S)
(1)

SM =
∑
S

〈kS 〉 · Pinteract(S)

size(S)
(2)

From Figure 1, SC is calculated for the sample pathogen.
Because the pathogen interacts with 3 different proteins
in the host network,

∑
S Pinteract(S) = 3. size(1) = 13,

size(2) = 5, size(3) = 5, and size(4) = 5. Pinteract(1) = 0,
Pinteract(2) = 2, Pinteract(3) = 0, and Pinteract(4) = 1. The
summation yields SC = 1 .60 .

In other words, SC is the summation of the ratio of inter-
actions a virus has with each shell of a host v.s. the total
interactions, weighted with the shell number itself. SM is
the same, except it is weighted with the moment of each
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Figure 2: Direct and Indirect Cancer Causing
Pathogens represented as the core score versus the
fraction of cancer causing pathogens that are greater
than or equal to the corresponding core score on the
x-axis. This graph omits the data points at the end
of the x axis where y = 1.

shell. Therefore, SM approaches SC from above as the net-
work becomes more connected with fewer, higher shells. Our
intuition behind these measures is derived from our previ-
ous work in [17] where we showed that shells with higher
moments had a greater number of pathogenic interactions.

The Weka J-48 decision tree classifier [7] was used to
ascertain if our measures can be used to correctly classify
pathogens as being cancer causing or not. Weka is a com-
monly used software package for data mining analysis, and
the J-48 decision tree classifier is typically used for decision
tree analysis.

4. RESULTS
Let Pr(≥ SC) denote the probability that a pathogen is

directly or indirectly cancer-causing in humans given that
its core score is greater than or equal to SC . We approxi-
mate this probability by taking the fraction of the pathogens
examined in this study that have a certain core score or
greater (using the observed core scores from the popula-
tion of pathogens examined). We found a linear relation-
ship between the core score and this probability (Figure 2,
R2 = 0.90). This strong correlation suggests that the core
score can be used to identify cancer causing pathogens. To
test this hypothesis, we used a decision tree to identify can-
cer causing pathogens based on this measure. We found,
based on our population, pathogens with a core score greater
than 8.416 were often correctly identified as cancer causing
(97% accuracy, 3 false negatives, 1 false positive).

Table 2 summarizes the incorrectly classified pathogens.
The false negatives were Human herpes virus 8 (HHV 8),
Human papillomavirus 31 (HPV 31), and Human papillo-
mavirus 58 (HPV 58). These three false negative pathogens
have abnormally low core scores (1.403, 1.209, and 0.154
respectively). However, we note that infection with HHV
8 (also known as Kaposi’s Sarcoma virus, or KSV) while
known to directly cause tumorgenesis in humans, is reported
to be insufficient to produce disease alone [9]. Due to the
pathogen’s requirement for another virus such as HIV to
cause cancer, we hypothesize that the virus does not need

Type I Error(Rejected True)
Name SC SM

Human herpesvirus 8 1.403 6.280
Human papillomavirus type 31 1.209 4.863
Human papillomavirus type 58 0.154 0.373
Type II Error(Failed to Reject False)
Name SC SM

Vaccinia virus 14.447 108.04

Table 2: Results of decision tree analysis on indi-
rect and directly cancer causing pathogens. Method
yielded 3 false negatives (Type I error) and 1 false
positive (Type II error).

Type I Error(Rejected True)
Name SC SM

Human herpesvirus 8 1.403 6.280
Human papillomavirus type 31 1.209 4.863
Human papillomavirus type 58 0.154 0.373

Table 3: Results of decision tree analysis on indi-
rect and directly cancer causing pathogens. Method
yielded 3 false negatives (Type I error) and 1 false
positive (Type II error).

to infiltrate the core of the host PIN in order to achieve op-
timal virulence. Further, HPV 58 has a strong geographic
component. For instance, it is highly prevalent in cervical
cancer of East Asian women but is rare in cancer among
North American women. Further exploration is needed to
establish a link between low core score and these two viruses.
As for Vaccinia, our sole false-positive, there may be some
similarities between its host interaction and that of a car-
cinogenic pathogen as Vaccinia has recently been noted to
interfere with cancer [3, 4, 8]. This may suggest that false-
positives found with this measurement may be used to re-
press cancer growth in certain cases - this is may be an
important direction for future work.

We then studied the problem of identifying pathogens that
only directly cause cancer. As stated earlier, we label a
pathogen as directly causing cancer if there was clear ev-
idence in the literature establishing a direct link between
infection and development of cancer. These pathogens are
denoted with an star in Table 1. Using this more narrow defi-
nition of“cancer causing”we find that our linear relationship
between SC and Pr(≥ SC) is significantly weakened, noting
that this probability monotonically increases for core scores
under 9.075 and reverses after this point.

However, if we consider both core score and moment score
together, we can correctly identify pathogens that directly
cause cancer with a 97% accuracy based on the results of our
decision tree (Figure 3). Using this two-variable classifier,
we obtained no false positives and only three false nega-
tives 3. We hypothesize this arises due to moment score
being associated with a virus’ ability to penetrate deep into
the core of a host. However, based on our previous find-
ings [17] where we showed that the core proteins are often
under-targeted, we suspect that high penetration of the core
may cause apitosis, or programmed cell death. As most can-
cer causing viruses are known to have an ability to disable or
delay the host’s mechanism for apitosis, this could explain
the cut off for very high moment scores.
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Figure 3: Direct Cancer Causing Pathogens: Mo-
ment Score vs. Core Score. Each data point rep-
resents a data point with a given core and moment
score. The legend specifies which pathogens are/are
not cancer causing. The box represents the area
that the decision tree determines as cancer causing.

Overall, our results suggest that the core and moment
scores of host-pathogen protein interactomes show promise
in helping facilitate the classification of unknown pathogens
as cancer causing. Our method could be used as a “pre-
check” prior to conducting more expensive wet lab testing,
and assist in the rapid identification of newly discovered
pathogens as being carcinogenic.

5. CONCLUSIONS
In this paper, we characterized pathogens by network-

topological characteristics of the host proteins they interact
with using two new measurements that we call the core score
and the moment socre. Using “ground truth” data based on
a literature review, we showed that these measurements can
be used to identify if the pathogens lead to malignant cancer
in humans with 97% accuracy. Further, the linear relation-
ship we found between the core score and the probability of
a pathogen leading to cancer indicates that the techniques
presented here could be potentially used to measure the level
of carcinogenicity for a given pathogen.

One potential shortcoming of our results is that we relied
entirely on existing data. We note that many of these data
sources were derived from previous studies that focused on
cancer-causing pathogens, which may bias some our results.
An important direction for future research in this topic is to
create a new, less-biased dataset of pathogens and their host
interactions. That said, we feel this work is a useful “first
step” toward identifying cancer-causing pathogens based on
host protein network interaction.

There are other important avenues for future work as well.
These include how to best characterize these measurements
on networks with erroneous, missing or uncertain interac-
tion, determining the relevance of the topological charac-
teristics of the proteins in the pathogen, and exploring the
possibility of these measurements as useful predictors for
other types of diseases.
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