
Measuring I/O Performance of Lustre and the Temporary
File System for Tradespace Applications on HPC Systems

Leonard Kosta
Department of EE & CS

US Military Academy
West Point, NY

leonard.kosta@usma.edu

Harrison Hunter
Department of E & CE

Mississippi State University
Mississippi State, MS

rhh132@msstate.edu

Glover George
Information Technology Lab

US Army ERDC
Vicksburg, MS

glover.e.george@erdc.dren.mil

Andrew Strelzoff
Information Technology Lab

US Army ERDC
Vicksburg, MS

andrew.strelzoff@erdc.dren.mil

Suzanne J. Matthews
∗

Department of EE & CS
US Military Academy

West Point, NY
suzanne.matthews@usma.edu

ABSTRACT
Tradespace analysis is an important part of design and mod-
eling simulations in the military, in which thousands of de-
sign parameters are made available for detecting potential
areas for performance enhancement in expensive equipment
such as combat and transport vehicles. In pursuit of larger,
more accurate tradespaces, engineers port existing serial de-
sign and evaluation codes onto ERDC’s supercomputers.
This results in a significant number of producer-consumer,
file-mediated codes running simultaneously on Lustre, the
distributed file system underlying our HPC systems. In
this paper, we compare the performance of Lustre to Linux
tmpfs, a shared memory file system that was designed for
interprocess data transfer within a single node. Our re-
sults suggest that when conducting many file I/O operations
in close succession, tmpfs offers tremendous speedup over
Lustre-controlled disk storage. For tradespace applications,
our results lend credence to a strategy of scheduling and or-
ganizing disparate codes in such a way to leverage tmpfs.
We believe our results will help guide engineers at other na-
tional labs and scientists without HPC expertise to more
easily port their I/O heavy serial codes to HPC systems.

CCS Concepts
•Software and its engineering → Distributed systems
organizing principles;

Keywords
Tradespace Design, I/O Performance, Lustre, Temporary
File System

∗Corresponding Author

This paper is authored by an employee(s) of the United States Government and is in the
public domain. Non-exclusive copying or redistribution is allowed, provided that the
article citation is given and the authors and agency are clearly identified as its source.

ACM SE ’17 April 13-15, Kennesaw, GA USA

ACM ISBN 978-1-4503-5024-2/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3077286.3077326

1. INTRODUCTION
One key challenge in modeling and simulation in the mili-

tary is the orchestration of large combinations of pre-existing
software packages into a single executable pipeline capable of
generating a large “tradespace” of design options, with thou-
sands of design and performance parameters. A tradespace
in this context is all system inputs, intermediate values, and
outputs organized as a large table of potential design op-
tions. A central goal is to port serial tradespace codes to
HPC systems; however, there are numerous challenges in-
volved. In cases where the source code is available, rewriting
complex serial code to efficiently use MPI is often infeasi-
ble, given requirements deadlines. In cases where the serial
source code is not available, lab developers must resort to
workarounds to enable code to execute in parallel.

The challenges that developers face with porting tradespace
codes at the US Army Engineer Research & Development
Center (ERDC) are not unique. Labs across the country
work with conceptual design teams who have traditionally
performed tradespaceing using Excel or similar workflows.
HPC and distributed-shared memory/MPI expertise is gen-
erally non-existent in these early stages of the platform ac-
quisition workflow. In addition, the linking of codes written
in one language (for example, C# to FORTRAN) that need
to interact with others often necessitates file-mediated com-
munication. Where this file I/O dominates over the compu-
tational time, any effort to accelerate this operation directly
impacts the overall turnaround time for simulations.

For a tradespace consisting of many design variables and
millions of iterations, tens of millions of small, temporary
files have to be written. Reading and writing from disk
is roughly 70 times slower than reading and writing data
from RAM. This speed penalty is expected and reasonable
for long-running “process time dominated” software such as
high fidelity physics packages, but is problematic when run-
ning large parameter sweeps or design of experiments mas-
sively parallel on large clusters. In this case, multiple runs
of the composite application executing on thousands of pro-
cesses simultaneously flood the distributed file system (Lus-
tre) causing dominating delays in data read-write perfor-
mance.

The Lustre file system [7] is a parallel, distributed file sys-



tem designed to accommodate concurrent I/O operations of
large magnitude. It is used in 70 of the Top 100 super-
computers on the Top500 (top500.org) list worldwide [3]. In
Lustre, all file metadata is handled by a dedicated metadata
server (MDS). Until version 2.5 (released in late 2013), Lus-
tre only allowed for a single MDS per file system. While it is
now possible to use multiple MDS servers, many machines
still use a single MDS due to the cost of adding and main-
taining additional servers. Consequently, programs running
on these machines can potentially encounter a major bottle-
neck when it comes to opening lots of files [1].

The alternative is to offload as many of these small I/O op-
erations to a faster, temporary location such as a compute
node’s shared memory partition, such as tmpfs. Splitting
the design parameter input space of a tradespace into mul-
tiple chunks, and running the single threaded software on
each of these chunks yet on thousands of cores is potentially
a more feasible option given time and expertise constraints.
In this case, we posit that small I/O operations should be
written to tmpfs, rather than Lustre, in order to create more
efficient tradespace applications.

To test our hypothesis, we ran our experiments on Topaz [2],
one of ERDC’s machines. Its local Lustre file system has a
single operating MDS. Our tests were performed in a live
environment with other users contributing to I/O load. Our
results suggest that writing to tmpfs is up to 30, 000 times
faster than Lustre. This suggests that for programs that use
files as a medium of inter-process communication, scheduling
interdependent, disparate serial codes to use tmpfs instead
of Lustre will yield significant performance improvement. In
a broader sense, our research provides useful data for HPC
novices seeking to find ways to avoid the Lustre I/O bottle-
neck in their programs.

2. RELATED WORK
Many researchers identify the Lustre bottleneck, though

few present end-user options for avoiding it. Alam et. al. [1]
discuss the potential bottleneck caused by Lustre’s meta-
data server. They lay out hardware and networking exper-
iments to tune the metadata server’s performance. Larkin
and Minga [5] acknowledge the bottleneck and explain that
the metadata server can only handle a finite number of op-
erations before failing. They suggest adding more metadata
servers to accommodate this load, but do not identify the
point at which this may become necessary nor provide any
other potential solutions. Spitz and Koehler [8] investigate
the various causes for Lustre failure. They enumerate issues
in both hardware and software, including Lustre’s metadata
performance. Ihara et. al. [4] use benchmarking tools to
test methods to improve the speed of Lustre’s MDS. They
specifically studied the impact of directory structure and
file size have on metadata operations. These works provide
insight into the causes of Lustre’s scalability troubles, but
do not suggest alternatives to using Lustre for file-mediated
communication.

This paper presents early research towards quantifying the
slowdown generated by floods of simultaneous writes on Lus-
tre. For ERDC and the Department of Defense, our research
enables us to increase the efficiency of large-scale tradespace
applications with relatively little overhead. For HPC novices
trying to quickly port serial code to an HPC system, our re-
search highlights potential performance issues of their own
applications when using Lustre-based HPC systems.

Figure 1: Overview of execution of test suite

3. EXPERIMENTAL METHODS
Figure 1 depicts an overview of our process. To simu-

late an application flooding Lustre with simultaneous small
writes, we write a Python script that creates an arbitrary
large number of small files. This enables us to conduct a vir-
tual “stress test”on the Lustre metadata server, and identify
any patterns in Lustre’s behavior under a load. For our ex-
periments, we created eight-byte files consisting of the single
digit 0. Choosing a file size this small allows us to put the
primary load on Lustre’s metadata server, enabling us to ob-
serve exactly how well the metadata server performs with-
out data generation being a confounding variable. Writing
at least one byte as data also helps us determine if the file
creation was a success.

To simulate a parallel program, the script employs the
mpi4py Python module and Topaz’s native SGI implementa-
tion of MPI. The script creates files in parallel while running
on different cores and nodes. We also create a bash script
which spins off multiple runs of our Python program. Every
time the script finishes, it appends its total run time to a
CSV file. This total time is the maximum of the individual
process run times.

We conduct our experiments on a subset of Topaz [2], a
3, 456-node SGI cluster hosted by ERDC. Each node consists
of 36 Intel Xeon E5-2699v3 Haswell cores at 2.3 GHz each.
Each node has 117 GB of main memory. Topaz has two
“work” file systems of 6.2 PB running Lustre 2.5, each with
a single operating MDS. All experiments were conducted on
the “live” system, with other users simultaneously using the
cluster. This enables us to study the performance on these
file systems under normal load. We also run our scripts on
the local tmpfs of these nodes.

4. RESULTS AND DISCUSSION
We test Lustre and tmpfs on various parameter sets. Our

initial “small” jobs write up to 1, 000 files on each process.
In our “medium” set of experiments, we max out at about
10, 000 per process. We lastly conduct a final “large” run
consisting of up to 30, 000 files per process. For each experi-
ment we varied the number of requested processes. For each
specification, we request a commensurate number of cores,
so that each process runs on a separate core.

4.1 Performance of Lustre
Figure 2 and 3 show our results of our experimentation

with Lustre with a “small” number (1 . . . 1, 000) of writes.
This specification is run with 36, 72, and 108 cores, resulting
in a maximum of approximately 100, 000 file write requests.
During the first run (Figure 2), Lustre scales fairly well with



Figure 2: Lustre performance when conducting a
small number of file write operations, run 1.

Figure 3: Lustre performance when conducting a
small number of file write operations, run 2.

36 and 72 cores, but experiences significant latency with 108
cores. Repeated executions at this scale display high vari-
ance both between and within runs (Figure 3). For example,
for the second run, Lustre took less than 12 seconds to write
on the order of 100, 000 files, as compared to almost 90 sec-
onds in the first. Yet, Lustre still experiences periods of
latency albeit at a smaller scale. We posit this difference is
due to activity of other users on the HPC system. Consid-
ering the relatively small number of files written, the tests
were susceptible to interference from other metadata oper-
ations on the system. All operations requiring metadata
access pass through the metadata server [9]. Increased traf-
fic at the metadata server could have delayed the file write
operations induced by our test suite [5].

When we transition to our “medium” scale experiments, it
becomes impractical to submit jobs utilizing more than 36
cores to the HPC, due to job queuing and time restrictions.
Therefore, only 36 cores were requested. In this iteration,
the number of files produced per process was increased to a
maximum of 10, 000, resulting in a peak of 360, 000 file write
operations sent to the metadata server. Figure 4 illustrates
our results. We note the high correlation (R2 = 0.8932)
between the data and a curve of best-fit suggests that on
Lustre the time taken to write files to disk storage varies
roughly quadratically with the number of file write opera-
tions conducted. While a request to write thousands of files
takes seconds, a request to write hundreds of thousands of
files can take an hour or longer.

We note that toward the end of the run, I/O request time
declines significantly. Examining the output files from these
points showed that some were empty rather than filled with
the expected 0 digit. We believe that this was caused by an
error at the metadata server, or from exceeding the max-

[t]

Figure 4: Lustre performance when conducting a
medium number of file write operations.

Figure 5: Lustre performance when conducting a
large number of file write operations.

imum number of pending metadata operations allowed by
the metadata server [8]. We do not believe that this data
was influenced significantly by the activity of other users on
the system due to the small variance and high correlation
with a curve of best fit.

Finally, we vary the number of output files per process
from 1 . . . 32, 000 for“large”experiments. Once again, we re-
quest 36 cores. This results in a maximum of over 1, 000, 000
file write requests being sent to the metadata server, which
took almost ten hours to process (Figure 5). Again, the
general trend of a quadratic relationship between the inde-
pendent and dependent variables held (R2 = 0.9243). As in
the“medium”experiments, there were points where the time
taken to complete the file write operations sharply declined.
Once again, some of these write operations fail; however,
the failures did not occur at the same number of file write
operations supplied.

4.2 Performance of Temporary File System
As with Lustre, the performance of writing to tmpfs was

assessed multiple times on “small”, “medium”, and “large”
scales. Figure 6 shows our results. Writing to the temporary
file system is very efficient. The difference between small
and medium scale tests is negligible. At no point during the
climb to 1, 000, 000 file write requests did writing to tmpfs

take more than 5 seconds to finish execution. Servicing these
file I/O requests require approximately linear time (R2 =
0.9964), and does not result in data loss. We believe the
perceived linear growth is due to file I/O operations being
treated as memory operations in tmpfs [6]. Figure 7 shows
the speedup of writing to tmpfs over Lustre. Speedup varies
from 100 on small numbers of files to 30, 000 on extremely
large number of file writes.



Figure 6: tmpfs performance when conducting a very
large number of file write operations.

Figure 7: Speedup of tmpfs over Lustre on large
data sets.

.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we experimentally demonstrate the per-
formance discrepancy of large numbers of write operations
on Lustre compared to the Linux Temporary File System
(tmpfs). We note that the relative speedup provided by
tmpfs continues to increase commensurate to the number of
write operations. In contrast, Lustre slows down and occa-
sionally fails to execute file writes properly as the number
of write requests grow large.

There are several implications of our results. For large-
scale applications that perform many intermediate write op-
erations (such as is required for tradespaces), designing code
that writes intermediates to tmpfs instead of Lustre can lead
to significant speedups. While it may be obvious to experi-
enced HPC developers that writing to shared memory will
be faster than a networked file system, it is not readily ob-
vious to novice HPC users trying to quickly port interde-
pendent, file-mediated serial code to an HPC cluster. This
is especially true for scientists from other disciplines who
do not possess in-house computer scientists with HPC ex-
pertise. Furthermore, HPC laboratories operating on tight
deadlines often do not have the time or resources rewrite se-
rial code to use shared memory effectively, or may not have
access to the source code at all.

Our results led ERDC to re-schedule tradespaces codes to
better leverage tmpfs. Using shell scripting and other par-
allel wrapping techniques, interdependent serial codes are
scheduled together on a single node, enabling maximum use
of tmpfs. Thus, multiple nodes have large numbers of inter-
dependent serial codes using tmpfs, with Lustre used to me-

diate file communication between nodes. Due to the limited
memory of tmpfs, using Lustre is not completely avoidable.
However, organizing tradespace applications in this way sig-
nificantly reduces the impact of the Lustre MDS bottleneck,
and simultaneously improves the performance of large-scale
tradespace applications. This enables developers to focus on
ongoing development, and near-seamlessly port their code to
HPC without concerning themselves with advanced parallel
programming techniques. This in turns lowers the bound-
aries to HPC. We stress our results are not only relevant to
ERDC, but to conceptual design research and development
staff throughout the DoD.

Future work will examine the effect of splitting large num-
bers of writes over many directories. We also plan to explore
whether the same patterns found for write-intensive jobs
hold true for read-intensive jobs.

6. ACKNOWLEDGMENTS
This research was made possible by the U.S. Army Engi-

neer Research and Development Center’s Information Tech-
nology Laboratories and the DoD High Performance Com-
puting Modernization Program. The first two authors are
undergraduate student researchers. The last three authors
are faculty advisors at ERDC and USMA respectively. The
opinions expressed in this work are solely of the authors, and
do not necessarily reflect those of the US Army, ERDC, the
US Military Academy, or the Department of Defense.

7. REFERENCES
[1] S. R. Alam, H. N. El-Harake, K. Howard,

N. Stringfellow, and F. Verzelloni. Parallel I/O and the
metadata wall. In Proceedings of the Sixth Workshop on
Parallel Data Storage, PDSW ’11, pages 13–18, New
York, NY, USA, 2011. ACM.

[2] DoD Supercomputing Resource Center. High
performance computing systems. Internet Website, last
accessed, July 2016.
https://www.erdc.hpc.mil/hardware/index.html.

[3] J. Franklin. Lustre 2.8.0 released at lug 2016 and
declared general availability. OpenSFS Administration,
3 2016.

[4] S. Ihara. Lustre metadata fundamental benchmark and
performance. Powerpoint Presentation, last accessed,
July 2016.
http://www.eofs.eu/fileadmin/lad2014/slides/
03 Shuichi Ihara Lustre Metadata LAD14.pdf.

[5] J. Larkin and A. Minga. Optimizing I/O performance
for lustre. Powerpoint Presentation, last accessed, June
2016. https://erdc.hpc.mil/docs/Tips/
OptimizingIOPerformanceForLustre.pdf.

[6] R. Love. Linux Systems Programming: Mapping Files
into Memory, chapter 4. O’Reilly Publishing Inc., 2007.

[7] Seagate Technology LLC. Lustre. Internet Website, last
accessed, 2016. http://lustre.org/.

[8] C. Spitz and A. Koehler. Tips and tricks for diagnosing
lustre problems on cray systems. In Proceedings of the
Cray User Group 2011. Cray Inc, 2011.

[9] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang,
and I. Huang. Understanding lustre filesystem internals.
Technical Report ORNL/TM-2009/117, National
Center for Computational Sciences, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, April 2009.


