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Abstract. Phylogenetic trees are tree structures that depict relation-
ships between organisms. Popular analysis techniques often produce large
collections of candidate trees, which are expensive to store. We intro-
duce TreeZip, a novel algorithm to compress phylogenetic trees based
on their shared evolutionary relationships. We evaluate TreeZip’s perfor-
mance on fourteen tree collections ranging from 2, 505 trees on 328 taxa
to 150, 000 trees on 525 taxa corresponding to 0.6 MB to 434 MB in
storage. Our results show that TreeZip is very effective, typically com-
pressing a tree file to less than 2% of its original size. When coupled with
standard compression methods such as 7zip, TreeZip can compress a file
to less than 1% of its original size. Our results strongly suggest that
TreeZip is very effective at compressing phylogenetic trees, which allows
for easier exchange of data with colleagues around the world.

1 Introduction

Phylogenetics is concerned with reconstructing the evolutionary history (or fam-
ily tree) for a set of organisms. An understanding of evolutionary mechanisms
and relationships is at the heart of modern pharmaceutical research for drug
discovery. It is also helping researchers understand (and defend against) rapidly
mutating viruses such as HIV, and is the basis of genetically enhanced organisms.
Typically, the evolutionary history for these organisms (or taxa) is depicted as
a binary tree, where the taxa are the leaves of the tree and the edges represent
the evolutionary relationships between the taxa (see Figure 1). To reconstruct
a phylogenetic tree, the most popular techniques (such as MrBayes [5]) often
return tens to hundreds of thousands of trees that represent equally-plausible
hypotheses for how the taxa evolved from a common ancestor. We develop a new
compression algorithm called TreeZip that reduces the requirements over stan-
dard compression algorithms for storing large collections of evolutionary trees.
Furthermore, our TreeZip algorithm allows large phylogenetic tree collections to
be shared easily with colleagues around the world.

The set of all edges (or bipartitions) from an evolutionary tree uniquely de-
fines that tree. However, a tree’s non-trivial bipartitions (or internal edges) are
of most interest. To simplify our discussion, we use the term bipartitions to refer
to a tree’s set of non-trivial bipartitions. In Figure 1, each tree’s bipartitions
are represented by vertical lines. A bipartition represents a split on an internal
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Fig. 1. A collection of six evolutionary trees on six taxa labeled A to F . For each tree,
its set of bipartitions are listed.

T0 = (((A,B),C),(D,(E,F)));
T1 = (((A,B),D),(C,(E,F)));
T2 = (((A,B),E),(D,(C,F)));
T3 = (((A,B),C),((E,F),D));
T4 = (((A,B),C),(F,(E,D)));
T5 = (((A,B),C),(E,(F,D)));

(a) Newick strings

T0 = (D,((A,B),C),(E,F));
T1 = (C,(D,(B,A)),(E,F));
T2 = (D,((B,A),E),(F,C));
T3 = (D,(C,(B,A)),(E,F));
T4 = (F,((A,B),C),(E,D));
T5 = (E,((B,A),C),(D,F));

(b) equivalent Newick strings

Fig. 2. Newick representations for the phylogenetic trees shown in Figure 1. Two dif-
ferent, but equivalent, Newick representations are given for each tree.

edge of the evolutionary tree that separates the taxa into two groups. A set of
bipartitions uniquely defines an evolutionary tree. For example, tree T0’s bipar-
titions are AB|CDEF , ABC|DEF , and ABCD|EF where the symbol ‘|’ acts
as a separator. Trees T0 and T3 are identical trees since they contain the same
set of bipartitions. For a binary tree, the number of bipartitions is n − 3, where
n is the number of taxa.

The Newick format [4] is the most widely used format to store a phylogenetic
tree in a file. In this format, the topology of the evolutionary tree is represented
using a notation based on balanced parentheses. Consider tree T0 in Figure 1. A
Newick representation of the topology of this tree is (((A,B),C),(D,(E,F)));,
where ‘;’ symbolizes the end of the Newick string. Matching pairs of parentheses
symbolize internal nodes in the evolutionary tree. The Newick representation of
a tree is not unique. For example, another valid Newick string for tree T0 is
(D,((A,B),C),(E,F));. Figure 2(a) shows the Newick tree file for the trees
in Figure 1, where the Newick representation is based on the lexicographical
ordering of the taxa names. Given that trees can have multiple, valid Newick
strings, Figure 2(b) shows a different Newick file, where the taxa names are
ordered randomly for each tree. For a given tree Ti on n taxa, there are O(2n−1)
possible Newick strings to represent it.

Our contributions. In this paper, we introduce TreeZip, a new lossless algo-
rithm for compressing large collections of phylogenetic trees. TreeZip requires
O(nt) running time for both its compression and decompression phases, where
n is the number of taxa and t is the number of trees in the collection of interest.
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Given that many of the bipartitions in a collection of phylogenetic trees are
shared, the novelty of our TreeZip approach is storing such relationships only
once in the compressed representation. TreeZip compresses a Newick file based
on the semantic representation (i.e., tree bipartitions). General-purpose data
compression techniques (e.g., gzip, bzip, and 7zip) do not know what the
data (Newick file) represents beyond the ASCII string representations. Hence,
there is great potential for obtaining good compression by utilizing the semantic
information in a Newick file describing large collections of evolutionary trees.

TreeZip leverages two phylogenetic tree algorithms, HashCS (constructs con-
sensus trees) [11] and HashRF (computes a topological t×t distance matrix) [10],
which use a hash table to organize the bipartitions from a collection of trees effi-
ciently. We demonstrate the performance of our TreeZip algorithm in comparison
to standard compression approaches (i.e., gzip, bzip, and 7zip) on 14 differ-
ent large-scale tree collections. Our largest (smallest) tree collection consists of
150,000 (2,505) trees requiring 434 MB (0.6 MB) of storage space. Overall, our
results show that the compressed TreeZip (.trz) file occupies from 0.2% to 2%
of its original size, which outperforms gzip and bzip compression algorithms.
When TreeZip is coupled with a standard compression algorithm, even greater
compression is attained. For the datasets studied here, the best compression oc-
curs when TreeZip compression is followed by 7zip. Hence, TreeZip is a great
alternative for biologists who want to recycle the trees generated from their
experiments.

Related work. To the best of our knowledge, the Texas Analysis of Symbolic
Phylogenetic Information (TASPI) [2] [3] is the only described approached for
compressing evolutionary trees. It is written in the ACL2 formal logic language,
but we were unable to find an available implementation of the TASPI algorithm
for direct comparison to our approach on all of our tree collections. However,
we were able to obtain the collection of trees that TASPI used to evaluate their
approach [2]. Section 3.1 compares the compression ratios of TreeZip to TASPI
on those set of trees, but without a TASPI implementation, we were unable to
compare running times.

Our TreeZip algorithm compliments and extends the work done with TASPI
in several ways. While compression storage results are given, the main focus of
TASPI is building a single consensus (or summary) tree from a compressed repre-
sentation of the collection of trees. While TreeZip can build consensus trees (not
shown here), our main focus is on compressing large collections of evolutionary
trees efficiently. Since a Newick string does not give a unique representation for
a phylogenetic tree (there are O(2n−1) possible Newick strings), the designers of
TASPI note that their algorithm is affected by the ordering of the taxa in the
Newick string. TreeZip, on the other hand, has been designed to not be impacted
by different Newick strings representing the same tree. Finally, TASPI does not
explicitly state if it has a decompression routine in order to rebuild the original
Newick tree file containing the t trees. TreeZip has such a routine.
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2 Our TreeZip Algorithm

Our TreeZip algorithm compresses and decompresses phylogenetic trees based
on their shared evolutionary relationships. Under compression, the input to the
algorithm is a Newick file and the output is a TreeZip (or a .trz) file. The input
to TreeZip’s decompression phase is a .trz file and the output is a Newick file.

2.1 Compression: Converting the Newick File to a .trz File

Building a hash table from the Newick file. In the Newick input file, each string i,
which represents tree Ti, is read and stored in a tree data structure. During
the depth-first traversal of input tree Ti, each of its bipartitions is fed through
two universal hash functions, h1 and h2 [1]. Both of these functions require as
input a n-bit bitstring representation of each bipartition in tree Ti, where n
represents the number of taxa. In the n-bit bitstring, the first bit is labeled by
the first taxon name, the second bit is represented by the second taxon, etc. We
can represent all of the taxa on one side of the tree with the bit ‘0’ and the
remaining taxa on the side of the tree with the bit ‘1’. In our example, taxa
on the same side of a bipartition as taxon A receive a ‘0’. In Figure 1 tree T1’s
bipartitions are AB|CDEF, ABD|CEF, and ABCD|EF which can be described
by the bitstrings 001111, 001011, and 000011, respectively.

The hash function h1 is used to generate the location (index) for storing a
bipartition in the hash table. h2 is responsible for creating a unique and short
bipartition identifier (BID) for the bipartition so that the entire n-bit bitstring
does not have to be analyzed in order to insert bipartitions into the hash table.
Our two universal hash functions are defined as follows: h1 (B) =

∑
biai mod m1

and h2 (B) =
∑

biai mod m2, where A = (a1, ..., an) is a list of random integers
in (0, ..., m1-1) and B = (b1, ..., bn) is a bipartition represented as an n-bit bit-
string. m1 represents the number of entries (or locations) in the hash table. m2

represents the largest bipartition ID (BID) given to a bipartition. bi represents
the ith bit of the n-bit bitstring representation of the bipartition B.

Figure 3(a) shows how the bipartitions from Figure 1 are stored in our hash
table. Each entry in the hash table consists of BID, a bitstring representation
of the bipartition, and a list of trees that contain that bipartition. Using these
universal hash functions, the probability that any two distinct bipartitions Bi

and Bj collide (i.e., h1(Bi) = h1(Bj)) is 1
m1

. In Figure 3, H [1] and H [8] show two
different bipartitions colliding to the same location in the hash table. Bipartitions
ABCF |DE and ABCE|DF both reside in H [1] and ABCD|EF and ABD|CEF
reside in H [8]. However, these colliding bipartitions are differentiated by their
h2 hash value. In location H [1], h2 values 56 and 81 differentiate bipartitions
ABCF |DE and ABCE|DF , respectively.

The probability of a double collision (h1(Bi) = h1(Bj) and h2(Bi) = h2(Bj))
is O(1

c ), where c can be an arbitrarily large number [1]. Double collisions often
result in an incorrect result for the underlying application. In our experience with
using these hash functions in our phylogenetic applications (HashCS, HashRF,
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(a) Hash table

1. TAXA A:B:C:D:E:F
2. NTREES 6
3. NBIPARTITIONS 8
4. L2K4 -:0:
5. L3K2A +:1:E
6. L3BAB +:1:F
7. L3K3 -:2:K2
8. L2BL2B +:1:C
9. L4K2 +:3:ABC

10. L2BAK2 +:1:B
11. L2K2AB +:1:C

(b) TreeZip (.trz) file

Fig. 3. TreeZip compressed file, which was obtained from our hash table data structure,
for the phylogenetic trees shown in Figure 1. The symbol represents a visible space
that is in the TreeZip file.

and TreeZip), we have not encountered double collision even when using small
c values. For t trees on n taxa, O(nt) time is required to construct the hash table.

Converting the hash table to .trz format. Once all of the bipartitions are orga-
nized in the hash table, we can begin the process of writing the .trz compressed
file, which is binary. Figure 3(b) shows a compressed version of the hash table
in Figure 3(a). The first three lines of the .trz file represent the taxa names,
the number of trees in the file, and the number of unique bipartitions denoted
by lines 1–3 in the .trz file in Figure 3(b). The remaining lines in the .trz file
are related to the bipartitions contained in the t evolutionary trees. Each of the
remaining lines is composed of two parts (n-bit bitstring and list of tree ids)
separated by a single space.

We run-length encode our bitstrings. Run-length encoding is a form of data
compression in which runs of data (i.e, sequences in which the same data value
occurs in many consecutive data elements) are stored as a single data value and
count, rather than as the original run. For the bitstring 001111 in Figure 3, we
would have a run-length encoding of 0:2 1:4, where each x : y element represents
the data value (x) and the number of repetitions (y). Since bitstrings can either
contain runs of 1s or 0s, we introduce two new symbols. 1: is encoded as K,
while 0: encoded as L. (We use characters A through J for compressing our list
of tree ids described shortly.) Hence, we encode the bitstring 001111 as L2K4.
In our experiments, we considered taking every group of 7 bits in our bitstring
and translating it to an ASCII character. However, we were able to get better
compression by using run-length encoding, which showed significant benefits on
our biological tree collections consisting of thousands of taxa.

The set of unique bipartitions comprise the remaining portion of the .trz
file. Let T represent the set of evolutionary trees of interest, where |T | = t.
For a bipartition B, Bin represents the set of the trees in T that share that
bipartition. Bout is the set of trees that do not share bipartition B. Since these
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sets are complements, their union comprises the set T . To minimize the amount
of information present in our .trz output, we print out the contents of the
smaller of these two sets. If |Bin| ≤ |Bout|, then we output Bin. Otherwise, Bout

is outputted. In our .trz file, we denote Bin and Bout lines with the ’+’and ’-’
symbol, respectively.

Even with use of the smaller of the Bin or Bout sets, the list of tree ids can
get very large. This is due to the fact that as t grows large, the number of bytes
necessary to store a single id also grows. Since the trees are inserted into the
hash table in their order of appearance in the Newick file, our lists of tree ids
will be in increasing order. As a result, we store the differences between adjacent
elements in our tree id list. These differences are then run-length encoded. To
eliminate the need for spaces between the run-length encoded differences, the
first digit of every element is encoded as a character, with 0 . . . 9 represented by
A . . . J. Consider bipartition ABCD|EF (bitstring 000011), which is in H [8] in
Figure 3. The Bin set will be used for this bipartition, and its run-length encoded
differences will be 0 1 2, which will be encoded as ABC on line 9 in the .trz file.

Finally, one of the guiding factors for our TreeZip format is not only effec-
tive compression, but also readability. We did try several different compression
schemes for our TreeZip approach, but the compression algorithm described here
gave the best compression along with the best decompression times (not shown).

2.2 Decompression: Converting the .trz File to a Newick File

Two major steps of the decompression in TreeZip are decoding the contents in
the .trz file and rebuilding the collection of t trees. Decoding reconstructs the
original hash table information which consists of bitstrings and the tree ids that
contain them. When the .trz file is decoded, each line of the file is processed
sequentially. First, the taxa information is fed into TreeZip. Next, the number
of trees is read. Each bipartition is then read sequentially.

To assist in bipartition collection, we maintain two data structures. The first,
which we will refer to as V , is a vector of the bipartitions contained in all of
the t trees. The second, M , is a t × k matrix, where k = n − 3 is the maximum
possible number of bipartitions for a phylogenetic tree. The length of the matrix
M corresponds to the number of trees specified in the .trz file. Each row i
in matrix M corresponds to the bipartitions required to rebuild tree Ti. For
example, in figure 3, the bipartition 000011 is shared among all the trees. It is
therefore added to vector V . On the other hand, the bipartitions on lines 5 and
6 are contained in only trees 4 and 5 respectively, and therefore will be added to
M [4] and M [5]. The bipartition on line 9 will be added to M [0], M [1], and M [3]
since ABC decodes to the tree ids T0, T1, and T3. Line 7 in our .trz file warrants
special attention. Since this line belongs to the set Bout, we know upon decoding
that this bipartition does not belong to trees 1 and 2. Therefore, the bipartition
is added to rows M [0], M [3], M [4], and M [5].

The decoded bitstrings are the basic units for building trees. Once the bit-
strings and the associated tree ids are decoded, we can build the original trees
one by one. In order to build tree x, the tree building function receives as input
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the vector V containing bipartitions shared among all of the trees and matrix
row M [x] which contains the bipartitions encoded as bitstrings for tree x. Since
vector V contains the bitstrings common to all the trees, it is always passed to
the tree building function.

Each of the t trees is built starting from tree T0 and ending with tree Tt−1,
whose bipartitions are stored in M [0] and M [t−1], respectively. The trees are re-
constructed in the same order that they were in the original Newick file. However,
given O(2n−1) possible Newick strings for a tree Ti, the Newick representation
that TreeZip outputs for tree Ti will probably differ from the Newick string in
the original file. However, this is not a problem semantically since the different
strings represent the same tree.

In order to build tree Ti, the bitstrings in matrix M [i] and vector V are merged
into a single array of bitstrings. Initially, tree Ti is represented as a star tree on
n taxa. Bipartitions from M [i] are added to refine tree Ti based on the number
of 1’s in its bitstring representation. (The number of 0’s could have been used
as well.) The more 1’s in the bitstring representation, the more taxa that are
grouped together by this bipartition. A star tree is an bitstring representation
consisting of all 1’s. For each of Ti’s bitstrings, we count the number of 1’s
it contains. Bipartitions are then sorted in increasing order of their bitstrings,
which means that bipartitions that group together the most taxa appear first.
The bipartition that groups together the fewest taxa appears last in the sorted
list of ’1’ bit counts. For each bipartition, a new internal node in tree Ti is
created. Hence, the bipartition is scanned to put the taxa into two groups—taxa
with ’0’ bits compose one group and those with ’1’ bits compose the other group.
The taxa indicated by the ‘1’ bits become children of the new internal node. The
above process repeats until all bipartitions are added to tree Ti.

3 Experimental Results

Our implementation of TreeZip used in the following experiments can be found
at http://treezip.googlecode.com. Experiments were conducted on a 2.5Ghz
Intel Core 2 quad-core machine with 4GB of RAM running Ubuntu Linux 8.10.
We ran our experiments on fourteen sets of trees which are described in Table 1.
We use the compression ratio measure to evaluate the performance of TreeZip in
comparison to general-purpose compression algorithms. The compression ratio C

is calculated as C = |compressed file|
|original file| . This result is multiplied by 100 to achieve a

percentage. A lower compression ratio denotes better compression of the original
file.

3.1 Performance on the TASPI Tree Collection

In Figure 4, we compare the compression ratio achieved by TreeZip and TASPI
on the 9 tree collections used in Collection 3 of [2], which is denoted by datasets 6
through 14 in Table 1. We also show the compression ratio of standard compres-
sion approaches (gzip, bzip, and 7zip) achieved on this set of trees, along with

http://treezip.googlecode.com
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Table 1. Characteristics of our biological tree files. The mammals, freshwater,
angiosperms, fish, and insects datasets were given to us by biologists. The remain-
ing tree collections are the same ones used by Boyer et al. to evaluate their TASPI
approach.

Datasets Description Taxa Trees File size (MB) Bipartitions

1 mammals Mammalian trees [6] 16 8,000 0.6 13

2 freshwater Organisms from fresh-
water, marine, and oil
habitats [7]

150 20,000 16.0 1,168

3 angiosperms Flowering plants [9] 567 33,306 105.0 2,444

4 fish Fish trees (unpub-
lished collection from
M. Glasner’s lab at
Texas A&M)

264 90,000 127.0 12,115

5 insects Insect trees [8] 525 150,000 434.0 574

6 aster328 328 2,505 5.3 788
7 eern476 476 2,505 7.7 3,019
8 john921 921 2,505 16.0 15,448
9 lipsc439 439 2,505 7.1 903
10 mari2594 Tree Collection 3 from

Boyer et al. [2]
2,594 2,505 47.0 8,628

11 ocho854 854 2,505 15.0 3,232
12 rbcl500 500 2,505 8.2 (8.1 in [2]) 1,579
13 three567 567 2,505 9.3 1,588
14 will2000 2,000 2,505 36.0 13,257

the ratio of TreeZip coupled with each of these standard approaches. Since an im-
plementation of TASPI is not available publicly, the compression ratio numbers
for TASPI were calculated directly from [2]. Since TASPI coupled its approach
with the bzip algorithm, we highlight the compression ratio achieved by TASPI
and TASPI+bzip (blue), as well as TreeZip and TreeZip+bzip (red). TASPI
did not couple its approach with either 7zip or gzip.

TreeZip achieves a better (lower) compression ratio than TASPI across all
the listed datasets. For example, on the lipsc439 dataset, TreeZip achieves a
compression ratio of 1.592%, while TASPI achieves a compression ratio of 5.57%.
This corresponds to a file size of 116 kilobytes and 406 kilobytes respectively. On
the mari2594 dataset, TreeZip achieves a compression ratio of 2.34%, compared
to TASPI’s 7.02%. This corresponds to compressed file sizes of 1.1 MB and
3.3 MB respectively.

When coupled with bzip, TASPI achieves a slightly better compression ra-
tio than TreeZip+bzip on most of the datasets. However, these differences are
often negligible. For example, on the three567 dataset, TreeZip+bzip has a
compression ratio of 0.63% compared to TASPI+bzip’s 0.47%. This corre-
sponds to 60 and 45 kilobytes respectively, a difference of 15 kilobytes. On the
lipsc439 dataset, TreeZip+bzip achieves a compression ratio of 0.55%, com-
pared to TASPI+bzip’s 0.48%. This corresponds to compressed files of 40 and
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Fig. 4. Compression ratios for various algorithms on Newick string representations of
evolutionary trees. TASPI and TASPI+bz2 numbers come from [2].

34.8 kilobytes in size, respectively. On the largest dataset of this set, mari2594,
TreeZip+bzip outperforms TASPI, achieving a compression ratio of 0.81% com-
pared to TASPI+bzip’s 1.07%. This corresponds to file sizes of and 392 and
515 kilobytes, respectively, a difference of 123 kilobytes.

3.2 Performance on Tree Sets Provided by Biologists

Figure 5(a) shows the performance of TreeZip on the large tree collections
(Datasets 1 through 5 in Table 1) given to us by biologists. By itself, TreeZip
achieves similar storage to the standard compression algorithms on our biolog-
ical tree sets. Since all of the trees in the mammals dataset are identical, all
approaches achieve the same compression ratio and storage size of 4 kilobytes.
For our fish dataset, 7zip outperformed TreeZip and the other standard com-
pression approaches, achieving a ratio of 0.46%. TreeZip, on the other hand, had
a compression ratio of 1.02%. This corresponds to a size of 596 kilobytes com-
pared to TreeZip’s 1.3 megabytes. Coupling TreeZip with standard compression
techniques results in improved performance. Returning back to our fish dataset,
TreeZip+7zip achieves a compression ratio of 0.261%, which corresponds to 340
kilobytes. This is most evident for our insects dataset, where TreeZip+7zip
achieves a compression ratio of 0.008%, or roughly 36 kilobytes. On this same
dataset, 7zip has a compression ratio of 0.14% resulting in a compressed file of
636 kilobytes. Our results suggest that the greater the level of bipartition shar-
ing and the number of trees, the better TreeZip will perform, especially when
coupled with the 7zip approach.

One critical advantage of TreeZip is that it collapses the topologies of the
phylogenetic trees into a set of common bipartitions, ensuring that each biparti-
tion appears at most once in the compressed form. Both standard compression
techniques and TASPI compress trees at the string level. If the Newick string for
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(b) different, but equivalent, Newick file

Fig. 5. Compression ratios of two different Newick files representing the same set of
evolutionary trees
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Fig. 6. Compression and decompression times for the algorithms under study

a particular tree is rearranged denoting a different, but equivalent, Newick string
representation of the same tree, text-based compression approaches will have dif-
ficulty identifying shared bipartitions among the t trees. Figure 5(b) shows the
impact of using different, but equivalent Newick representations (see Figure 2) in
our biological tree collections. While TreeZip’s performance remains the same,
the compression ratio and storage requirements for the standard compression
methods explode. For example, for the fish dataset, 7zip’s compression ratio
increases from 0.46% to 10.24%. This corresponds to an increase from 596 kilo-
bytes to 13 megabytes. TASPI’s storage requirements would also increase under
different, but equivalent, Newick strings. In contrast, TreeZip and TreeZip+7zip
still requires only 1.3 megabytes and 340 kilobytes of storage, respectively.

While TreeZip competes against standard compression algorithms in terms of
storage size, it does so at the cost of running time (see Figure 6). While TreeZip’s
compression speed is about twice as slow as bzip and 7zip (gzip runs extremely
fast requiring less than 10 seconds on our datasets), its decompression speed is
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very slow. All of the methods require less than a second to decompress, while
TreeZip can take anywhere from a second to 3, 000 seconds. Obviously, this is a
place that needs optimization. However, if the user is merely interested in com-
pressing tree files as part of an archive with very little chance for decompression,
then TreeZip is a desirable alternative to standard compression techniques. Fur-
thermore, if there is no predefined ordering of the taxa in the Newick file, then
using TreeZip will result in a very small file compared to the alternatives given
the robustness of the TreeZip approach.

4 Conclusions and Future Work

Phylogenetic heuristics often produces tens to hundreds of thousands of equally-
plausible trees, which are usually stored in a Newick-formatted text file. Due to
the number of trees, the size of the input file is easily over hundreds of megabytes
making it difficult to store, maintain, and exchange the tree files. In this paper,
we introduce our TreeZip algorithm, a novel approach that leverages the seman-
tic information among trees to compress the tree files. The advantage of TreeZip
over current methods is its ability to uniquely identify shared bipartitions and
store this information in a compressed TreeZip (.trz) file, which consumes con-
siderably less storage space than the original Newick file.

Our TreeZip algorithm outperforms standard compression methods by achiev-
ing a better compression ratio. For example, our results show that our .trz file
occupies from 0.2% to 2% of the original Newick file, which outperforms gzip
and bzip algorithms. When TreeZip is coupled with standard compression algo-
rithms, it is the best compression technique for phylogenetic trees. Thus, TreeZip
can work on two levels. It can work at the .trz file level, where the file can be
used as input for other phylogenetic tree algorithms. The benefit of the .trz file
is that it is readable and can be queried more easily (without decompression)
than the Newick file regarding the evolutionary relationships contained in the
collection of t trees. Coupling TreeZip with text compression algorithms such
as 7zip produces the best storage savings. In addition, a phylogenetic tree can
be represented using several different (yet equivalent) Newick string representa-
tions. This proves disastrous for standard compression methods, which perform
poorly in the absence of any available redundancy at the Newick string level.
TreeZip, on the other hand, performs well on such datasets.

Overall, TreeZip’s efficient method for compressing trees allows large phyloge-
netic tree collections to be easily exchanged with others, an essential component
for successful scientific collaborations. Without compression, sharing data can
become quite tedious, especially across long distances. As biologists obtain more
data and use phylogenetic heuristics to build large-scale evolutionary trees, the
size of their tree collections will continue to grow in size. Thus, compression al-
gorithms such as TreeZip will become critical tools for helping biologists manage
their rapidly expanding phylogenetic tree collections.

In the future, we will optimize TreeZip for speed since the focus in this work
was the quality of the compression achieved. Due to the inherent flexibility of
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the compressed format, we plan to add in functionality to incorporate new,
additional trees into an existing compressed collection.
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