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Heterogeneous Compression of Large
Collections of Evolutionary Trees
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Abstract—Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous
tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of
large tree collections, and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we
extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous
tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree
collections, or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03% (72.69%) space savings on
unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file
allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly,
combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34% (81.43%) on
unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of
tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
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1 INTRODUCTION

PHylogenetic data is growing at an incredible rate.
Modern (“next-gen”) sequencing techniques greatly

reduce the cost of molecular sequencing, enabling sci-
entists access to larger pools of source genomes. High
performance phylogenetic search programs such as Mr-
Bayes [1] [2], RAxML [3] and BEAGLE [4] can run longer
and more comprehensive searches, producing larger
collections of trees. As phylogenetic data continues to
grow, the question of how best to archive the resulting
tree collections rises to prominence. In other biological
communities, compression techniques [5] [6] [7] offer
some of the best solutions.

Scientists currently respond to the challenge of phylo-
genetic data storage by discarding the bulk of the trees
returned by phylogenetic search and storing only the
consensus tree in repositories such as Dryad [8] and
TreeBASE [9]. We have previously established the value
of saving entire tree collections [10] [11], but will not
belabor the point here. Despite this reduction of data and
the increasing cheapness of hard disk space, archiving
and organizing these disparate analyses is no easy task.

Furthermore, it is not easy for researchers to easily
relate and compare their experimental results with the
work done by others. Phylogenetic analysis by definition
is heterogeneous, with each community of researchers
focusing on their own genus or family of interest. When
genera and families are small, it is easy to visually
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compare competing hypotheses or analyses. However, as
families and genera grow large, it becomes very difficult
to compare competing (and overlapping) hypotheses of
evolutionary relationships. As we move toward building
the Tree of Life, analyses must be combined and com-
pared to analyses performed on orders, classes, phylums
and kingdoms. Automated methods for detecting and
efficiently storing relationships contained in heteroge-
neous collections of evolutionary trees will be crucial for
the success of such endeavors.

Previously, we introduced TreeZip [12], [13], a loss-
less compression algorithm and software package for
phylogenetic tree collections. Our goal in designing
TreeZip was to provide an efficient alternative to the
Newick format [14], the most popular way to repre-
sent phylogenetic trees. In the Newick format, match-
ing pairs of parentheses symbolize internal nodes of
the tree. A key limitation of the Newick format is
that there are O(2n−1) Newick representations for a
single tree with n taxa. Consider tree T1 in Fig-
ure 1. The Newick strings (((A,B),C),(D,E)); and
((C,(A,B)),(E,D)); equally represent the relation-
ships contained in T1. Lastly, a collection of t trees over
n taxa contains O(nt) total evolutionary relationships.
These relationships must be rediscovered and related to
each other every time the Newick file is analyzed.

While general-purpose data compression techniques
(e.g. 7zip) can reduce the storage requirements of trees,
they cannot recognize (or leverage) domain-specific in-
formation contained in the Newick-formatted file. Thus
100, 000 different, but equivalent Newick string repre-
sentations of a single tree is viewed as 100, 000 unique
strings by 7zip. Furthermore, the compression process
further obscures the evolutionary relationships con-
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Fig. 1: Sample collection of three heterogeneous trees,
consisting of common clades (D,E) and ((A,B),C)
(circled).

tained in a tree collection. The compressed Newick file
must be decompressed for analysis, losing all space
savings gained through compression. Analyzing the un-
compressed Newick file requires the overhead cost of
rediscovering the evolutionary relationships contained
in it. Then, the file must be re-compressed to regain space
savings. This whole process must repeat every time the
file needs to be analyzed.

TreeZip employs domain-based compression to com-
pactly store large tree collections, and is immune to
the multiple representations of input Newick strings.
The novelty of TreeZip is that it stores the evolutionary
relationships contained in a tree collection uniquely in
the compressed (TRZ) file, which itself is a unique 1:1
representation of the input tree collection. TreeZip pays
for the O(nt) cost required to collect evolutionary rela-
tionships exactly once and up-front through its compres-
sion algorithm. This enables subsequent operations to be
performed on the TRZ file in close to real-time, without
losing the space savings achieved though compression.

Our previous experimental results showed that
TreeZip averages 96% space savings on unweighted col-
lections, and 74% space savings on weighted collections
of trees [12]. Compressing TRZ files with 7zip yields
additional space savings, averaging around 99% on un-
weighted tree collections, and 95% on weighted tree
collections [12]. A consequence of phylogenetic search
is that the outputted trees share a high degree of evolu-
tionary relationships. The more similar a set of trees, the
better TreeZip’s space savings. TreeZip is currently the
most efficient method for compressing and storing large
collections of phylogenetic trees.

However, our previous version of TreeZip was limited
to homogeneous collections of trees. The trees outputted
from phylogenetic search are homogeneous. That is, all
trees in the collection are defined over a single, identical
set of taxa. In heterogeneous collections of trees, every
tree in the collection can have a unique set of taxa, or
contain a subset of taxa present in other trees in the

collection. For example, the trees in Figure 1 are hetero-
geneous. Likewise, the analyses produced by separate
groups of researchers may not be over the exact same
group of organisms (despite significant overlap). The
lossless compression of such datasets would therefore
be beneficial to the scientific community.

In this paper, we discuss TreeZip’s new heterogeneous
algorithms and their performance. Our heterogeneous
compression algorithm is centered around uniquely
identifying common subtrees (instead of bipartitions)
in a collection of trees. We simulated heterogeneous
datasets of trees based on two existing biological datasets
and two artificial collections of our creation. In our
simulations, we varied the number of unique taxa sets
contained in each tree collection.

Our results indicated that while performance does
understandably degrade as the number of unique taxa
sets in the collection approaches the number of trees,
TreeZip’s compression algorithm is capable of maintain-
ing high space savings for smaller numbers of unique
taxa sets. When the number of unique taxa sets is
below 100, TreeZip is achieves average space savings of
72.69% and 89.03% on weighted and unweighted trees
respectively. Furthermore, operations on heterogeneous
collections of trees stored in TRZ files can be performed
quickly. When combined with 7zip, TreeZip achieves
average respective space savings of 81.43% and 97.34%
on our weighted and unweighted datasets. This strongly
indicates that TreeZip is effective at compressing and
relating heterogeneous collections of trees.

The rest of the paper is organized as follows. Section 2
discusses the theory behind our heterogeneous com-
pression algorithm. Section 3 discusses our experimental
evaluation. We summarize our findings in Section 4.

2 HETEROGENEOUS COMPRESSION

Consider the three trees in Figure 1. The entire collec-
tion of trees is over the taxa set {A,B,C,D,E,F}. How-
ever, each tree contains a sub-collection of these six
taxa. While each tree is distinct, there are clear rela-
tionships between them. For example, all three trees
share clade ((A,B),C), while trees T1 and T3 share
clade (D,E). Our compression algorithm for heteroge-
neous trees uniquely identifies and stores such relation-
ships, significantly reducing storage requirements and
enabling fast analysis.

2.1 Representation of Heterogeneous Trees
Any phylogenetic tree can be decomposed into a set of
bipartitions. A bipartition is a cut on an edge in the tree
that partitions the taxa into two sets. Each tree with n
taxa necessarily has 2(n − 1) total bipartitions. While
quartets [15] are another common building block for
trees, bipartitions are preferable for compression. First,
while a tree over n taxa has O

(
n
4

)
quartets, it has O(n)

bipartitions. Second, while there are a greater number of
total possible bipartitions than quartets ( O(2n) vs O

(
n
4

)
),
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trees returned from phylogenetic search tend to be very
similar to each other, and thus have high levels of
bipartition sharing.

Our empirical analysis over homogeneous biological
tree collections have confirmed that the set of total
bipartitions over any particular collection of trees is very
small, due to the high degree of similarity between the
trees [12] [16]. The goal of heterogeneous compression
of trees is to create a consensus of the work done by
a group of scientists who operate over largely similar
(but not identical) sets of taxa. We hypothesize that
heterogeneous trees over a common taxa set returned
from multiple phylogenetic searches should also contain
high degrees of similarity, as all should have converged
on similar solution spaces.

Bipartitions are not effective at representing heteroge-
neous collections of trees. For the rooted trees in Figure 1,
tree T1’s non-trivial bipartitions are ABC|DE, AB|CDE,
and DE|ABC. T2 contains bipartitions AB|CD and
ABC|D. Lastly, T3 contains bipartitions ABC|DEF ,
AB|CDEF , DE|ABCF and DEF |ABC. Despite the
high level of similarity between the underlying structure
of the trees, there are no common bipartitions within our
group of trees.

In order to support heterogeneous trees, we shifted
from a bipartition model to a subtree model. A subtree is
defined as the set of taxa residing directly below a cut on
any internal edge or adjacent to the root. Each tree con-
tains 2(n− 1) subtrees. In Figure 1, T1 contains subtrees
{ABC}, {AB}, and {DE}. T2 contains subtrees {AB},
{ABC}, and {D}. Lastly, T3 contains subtrees {ABC},
{AB}, {DE}, and {DEF}. Observe that all three trees in
Figure 1 contain subtrees {AB} and {ABC}, and trees
T1 and T3 also share the subtree {DE}. By viewing trees
as a collection of subtrees rather than a collection of
bipartitions, we are able to detect relationships within
a heterogeneous collection of trees.

2.2 Compression Algorithm

For a given collection of trees, the set of unique taxa
over the entire collection is first determined and ordered
lexicographically. We refer to this global set of taxa
as G, where N = |G|. For each tree, we collect its
subtrees via depth-first search. Each subtree is uniquely
represented by a N -length bitstring (B). Each taxon in
our lexicographic ordering is assigned an index i and
the corresponding bit in B (bi) represents the presence
or absence of that taxon in a particular subtree. If a
taxon occurs in a particular subtree, the corresponding
bit is set to 1. Otherwise, it is set to 0. For example,
the subtree {AB} in all three trees is represented by
the bitstring 110000, where the first bit denotes the
presence of ‘A’ in the subtree and the second denotes
the presence of ‘B’ in the subtree. We note that for any
tree, the set of taxa n ≤ N over which the tree is defined
can be obtained by performing a bitwise OR operation
over all the bitstrings derived from that tree. TreeZip’s

heterogeneous compression algorithm is O(N t), which
is the time required to collect the O(N ) subtrees from
each of the t trees in a collection.

2.2.1 Universal hashing of subtrees and trees
We use universal hashing to quickly capture the set
of unique subtrees within the tree. Let t represent the
total number of trees in our collection of interest. For
each taxon i from 1 . . .N , two random numbers are
generated, ri and si. Each bitstring (B) representation of
our subtrees is then fed into two hashing functions [16],
[17] h1 and h2,

h1(B) =
N∑
i=1

bi × ri mod m1

h2(B) =
N∑
i=1

bi × si mod m2

where m1 is the first prime number greater than N × t
and m2 is the first prime greater than N × t × c,
where c is a large constant number. Thus, each subtree
is uniquely defined by h1(B).h2(B) (where . represents
concatenation). Our las-vegas randomized hashing strat-
egy guarantees that h1(B1).h2(B1) = h1(B2).h2(B2) iff
B1 = B2. By storing an explicit bitstring representation
of each subtree in our hash table, we can always deter-
mine if B1 = B2, guaranteeing us 0% probability of error.
To eliminate the possibility of an error state, our code
terminates and notifies the user to restart the program
if such a collision is detected. This would occur due
to repetition in our generated set of random numbers
(ri, si), and regenerating the random numbers would
fix this problem. In practice, these collisions have never
occurred. For each subtree, we store the set of ids of the
trees that contain it. For weighted collections, we also
store branch lengths.

Let k denote the number of unique subtrees in our set
of t trees. We can represent each tree T as a k-bit bitstring
(A), where each position ai ∈ A denotes a unique subtree
in a collection. Ordering of subtrees do not matter, so
long as the ordering is consistent for all trees. If T
contains subtree i, then ai = 1. Otherwise, ai = 0. For
each subtree i from 1 . . . k, two new random numbers are
generated, oi and pi. We define two additional hashing
functions [16] h3 and h4,

h3(A) =

k∑
i=1

ai × oi mod m3

h4(A) =
k∑

i=1

ai × pi mod m4

where m3 is the first prime number greater than t and
m4 is the first prime number greater than t×c. Thus, each
unique tree in the collection is defined by h3(A).h4(A).
Our las-vegas randomized hashing strategy once again
guarantees that h3(A1).h4(A1) = h3(A2).h4(A2) iff A1 =
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A2 by storing the bitstring representation of each tree.
Thus, we can always determine errors in our approach
(see details above), and terminate the process if neces-
sary.

2.2.2 The TRZ encoding scheme
Once the hash tables consisting of the unique subtrees
and trees are collected, the last step is to write these
contents to the TreeZip compressed (TRZ) file. One
of the primary goals of the TRZ format is to be a
compact representation that highlights the evolutionary
relationships contained in a collection of trees. Storing
encoded versions of these relationships is important, as
it allows operations (e.g. computing the consensus) to be
performed directly and quickly on the TRZ file, while
reducing space requirements. As such, we eschewed
binary compression schemes such as Huffman encod-
ing [18] and LZW [19], which obscure the relationships
in a collection of trees. Run-length encoding ensures
reasonable space savings while enabling analysis to be
performed directly on the TRZ file. We note that since
the TRZ file is text, it can be further compressed with
general-purpose text compression algorithms such as
7zip with little overhead.

The first three lines of the compressed TRZ file repre-
sent the global set of taxa names, the number of unique
trees in the file, and the number of unique subtrees.
If the file is heterogeneous, we add a ’H’ flag on the
line designating the unique set of trees. We first process
the hash table that identified unique subtrees. Prior to
encoding, subtrees are stored by the order of the number
of 1s they contain, with ties broken lexicographically.
This ensures the 1:1 representation of a TRZ file to its
collection of trees.

Afterwards, we process each row in the hash table con-
taining unique subtrees. Each row represents a separate
line in the compressed file. There are three components
(bitstrings, tree ids, branch lengths) to a TRZ line. The
full details of TreeZip’s encoding scheme can be found
in [12]. Each bitstring is run-length encoded. Duplicate
trees are removed from each row, and are encoded using
TreeZip’s encoding procedure. After the set of trees
are encoded, the set of branch lengths for each tree is
encoded and appended to the end of the row. At the
end of the file, we encode the hash-table that identified
unique trees in the collection. This table ensures that we
will be able to rebuild the collection fully and correctly
if decompression is required.

2.3 Computing Consensus and Other Extensible
Operations
TreeZip stores trees more efficiently than Newick files.
Furthermore, since the TRZ file stores only the unique set
of subtrees in a tree collection, we can perform analysis
on a TRZ file much quicker than than we can on a
Newick file. Previously, we established TreeZip’s equiv-
alence to Newick files on homogeneous collections of

trees and showed that operations on TRZ files are much
faster than equivalent operations on Newick files [12]. By
extending TreeZip’s functionality to encompass hetero-
geneous collections, we’ve also extended TreeZip’s abil-
ity to perform extensible operations on these collections.

Of greatest significance is TreeZip’s ability to compute
the strict or majority consensus tree of an encoded
heterogeneous collection of trees, without any need for
decompression. Unlike the consensus tree of a homoge-
nous collection, the heterogeneous consensus tree may
not contain the total set of N taxa in the collection.
Consider the three trees in Figure 1. TreeZip outputs
((A,B),C); as the strict consensus for this collection,
as these underlying subtrees appear in every collection.
Likewise, TreeZip reports (((A,B),C),(D,E)); as the
majority consensus, as these underlying subtrees appear
in at least two of the three trees. To the best of our
knowledge, no other program exists that can compute
the strict or majority consensus of a collection of trees
over a heterogeneous taxa set.

Furthermore, TreeZip can directly compare collections
of heterogeneous trees. Since the TRZ format is a 1:1 rep-
resentation of a collection of trees, TreeZip can compute
the total set of unique trees over two given collections
(union), the set of unique trees that are contained in both
collections (intersection), and the set of unique trees that
are contained in one collection, but not the other (set
difference). All these operations can be performed close
to real-time without needing to decompress the TRZ file.

2.4 Decompression Algorithm

Since the TRZ file is designed to be an archive for-
mat for large collections of trees, it is not meant to
be decompressed frequently. That said, TreeZip has a
decompression routine that returns the set of trees in
Newick format. The procedure is largely identical to that
described in [12]. The TRZ file is decoded, and for each
unique tree, the set of subtree bitstrings contained within
them is stored. Each tree is then rebuilt sequentially,
using the second table (which tracks duplicate trees) as
reference.

To properly rebuild each tree, a “star” tree bitstring is
used as the base. With the processing of each additional
subtree, internal nodes are added, until the entire tree
is rebuilt. In the case of homogeneous collections, this
“star” tree is an n-length bitstring, where each bit is set to
1. For heterogeneous datasets, each tree can have some
set of n taxa, where n ≤ N . Thus for each tree, it is
necessary to calculate the corresponding “star tree”. To
do this, we initially populate an N -length bitstring of all
0s for each tree. By performing an OR operation over all
the subtrees contained in each tree, one gets appropriate
star bitstring associated with each tree. One pass over
the entire hash table is sufficient to generate the star
bitstrings of all the trees in a collection.
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3 EVALUATION

Our implementation of TreeZip used in the following ex-
periments is free to downloaded and can be accessed at
http://suzannejmatthews.com/private/treezip-3.0.tar.gz.
Code will be placed at the official TreeZip site,
http://treezip.googlecode.com, upon publication.
Experiments were conducted on a 64-bit Intel machine
with two quad-core processors and 32 GB of RAM
running Ubuntu Linux 12.04. TreeZip is written in C++
and compiled with g++ 4.6.3 with the -03 compiler
option.

3.1 Description of Simulated Datasets
In order to build the Tree of Life, researchers must use a
variety of different methods to collect and combine their
analyses, which will have varying levels of heterogene-
ity. By studying how heterogeneity affects our approach,
we gain clues on how best to combine and store such
collections. Simulated datasets allow us to test different
scenarios for how phylogenetic researchers may combine
disparate tree collections.

The compression quality of our algorithm is depen-
dent on the number of unique subtrees in the collection.
As the heterogeneity of a dataset increases, space savings
is sharply reduced due to the increased size of the
underlying set of unique subtrees. Simulated datasets
allowed us to precisely model and study the rate of this
degradation.

We generate heterogeneous datasets by adding het-
erogeneity to homogeneous datasets. For each dataset,
we randomly partition the total set of trees into u
equally sized partitions, randomly remove a percentage
of taxa from each partition, and recombine the partitions
together. This yields a heterogeneous dataset with u taxa
sets, N total taxa, and t trees. A taxa set is a unique set of
taxa over which a collection of trees is defined. Consider
Figure 1 where each tree has a unique set of taxa,
yielding three unique taxa sets in the collection. When
u = 1, the collection is identical to the homogeneous
source dataset. As u increases, the number of unique taxa
sets and subtrees in a dataset also increases, resulting in
greater levels of heterogeneity.

Our source homogeneous datasets include two exist-
ing biological tree collections and two artificial collec-
tions of our creation. In our experimentation, we con-
sidered trees with weighted and unweighted branches.
Our unweighted collections are identical to our weighted
ones, except that all branch lengths were removed.

We obtained biological datasets from two previously
published Bayesian phylogenetic analyses that utilized
MrBayes [20] . The first biological dataset consists of
20, 000 unique trees obtained from an analysis of 150
taxa [21]. The weighted (unweighted) version of the
Newick file for this dataset is 67 MB (16 MB). There are
1, 318 (1, 168) unique subtrees out of 5.9 million possible
in the weighted (unweighted) collections. The second
biological dataset consists of 33, 306 trees obtained from

an analysis of 567 angiosperm taxa [22]. Of the 33, 306
trees, 33, 169 are unique. The size of the weighted (un-
weighted) Newick file for this collection is 428 MB (105
MB). There are 3, 011 (2, 444) unique subtrees out of
≈ 37.7 million possible in the weighted (unweighted)
sets.

To test TreeZip’s performance on massive tree col-
lections, we simulated two large artificial datasets that
have similar majority consensus rates and proportion of
subtrees to our previously described biological collec-
tions. The ratio of subtrees to taxa in the 150-taxa and
567-taxa datasets were 7.8 and 4.3 respectively. Using
HashCS [23], the majority consensus rates for the 150-
taxa and 567-taxa datasets were determined to be 85.7%
and 92.5% respectively.

Our first artificial collection contains 3, 000 taxa and
20, 000 unique trees, and has a majority consensus rate
of 85.7% and a subtree ratio of 7.6. The weighted (un-
weighted) version of the Newick file for this dataset is 1.4
GB (380 MB). There are 25, 949 (22, 949) unique subtrees
out of ≈ 199 million possible in our weighted (un-
weighted) sets. Our second artificial collection contains
5, 000 taxa and 20, 000 unique trees and has a majority
consensus rate of 92.5% and a subtree ratio of 4.4. The
size of the weighted (unweighted) Newick file for this
collection is 2.4 GB (647 MB). There are 27, 004 (22, 004)
unique subtrees out of ≈ 332 million possible in our
weighted (unweighted) sets.

3.2 Measuring performance
For each homogeneous dataset, we generated heteroge-
neous collections of t trees, and vary u from 1 . . . 1, 000.
For each heterogeneous dataset produced, we record
the amount of space savings the TRZ file has over
the corresponding Newick file. The space savings S is
measured as S = (1 − |TRZ|

|Newick| ) × 100. Space savings
of 0% means there is no reduction of file size. The
goal for any compression algorithm is achieve space
savings close to 100%. We also measure the running time
of our compression, set operations, and decompression
methods.

3.3 Space savings performance results
Figure 2 shows the performance of TreeZip on our
heterogeneous collections of trees. Figure 2a and 2b
depict the results on our biological and artificial datasets
respectively. The x-axis denotes the number of unique
taxa sets in the file. The y-axis denotes the amount of
space savings the TRZ file achieves over the Newick file.
Consistent with prior results [12], TreeZip achieves an
average of 74.44% space savings on weighted datasets,
and 96.43% space savings on unweighted data sets when
u = 1, the homogeneous case. This discrepancy is caused
by the presence of branch lengths.

As the number of unique taxa sets contained in a
collection increases, the space savings degrades. As u in-
creases to 100, average space savings of our unweighted
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(a) Biological heterogeneous collections of trees.
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(b) Artificial heterogeneous collections of trees.

Fig. 2: TreeZip performance on heterogeneous trees.
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(a) Biological heterogeneous collections of trees.
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(b) Artificial heterogeneous collections of trees.

Fig. 3: TreeZip+7zip performance on heterogeneous trees.

biological datasets dips to 86%. In comparison, the aver-
age space savings of our unweighted artificial datasets
reduces to 76%. However, when u is increased further
to 1, 000 the average space savings of our unweighted
biological and artificial datasets drop to 55% and 14.5%
respectively. This rapid decrease in space savings is due
to the number of underlying subtrees exploding. Since
our compression approach centers around identifying
unique subtrees in a collection, performance degrades as
the number of unique taxa sets approaches the number
of trees in the collection.

The effect of subtree explosion is muted in our
weighted datasets. As u increases to 100, our biological
and artificial weighted datasets slightly decrease to 71%
and 70% average space savings. However, as the number
of unique taxa sets in the collection increases to 1, 000,

the average space savings for our weighted biological
datasets dip to 64%. The average space savings for
our artificial datasets decrease to 54%. These results
are promising, as the majority of phylogenetic analyses
are weighted. Even with high levels of heterogeneity
(u = 1, 000), the resulting TRZ file is at most half the
size of the Newick file.

Despite the degradation in our larger datasets, we can
still achieve additional space savings when we combine
TreeZip with general purpose compression algorithms.
Figure 3 shows the additional space savings resulting
from compressing the TRZ files with 7zip. Figure 3a
and 3b show the space savings on our biological and
artificial collections respectively. TreeZip+7zip achieves
average spaces savings of 96.29% and 96.3% on our
unweighted biological and artificial datasets. For our
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Fig. 4: Performance of consensus operations on weighted
biological and artificial datasets.

weighted biological and artificial datasets, TreeZip+7zip
averages 81.83% and 80.86% respectively.

3.4 Runtime performance results

Compression is a one-time cost TreeZip pays up-front
to enable space savings and the high speed of subse-
quent operations. Due to the additional time needed
to determine the global set of taxa (G), heterogeneous
compression is on average 36.4% slower than its ho-
mogeneous counterpart. For our 150-taxa datasets, com-
pression took on average 27.07 seconds (15.61 seconds)
on our weighted (unweighted) collections. For our 567-
taxa datasets, compression took on average 3.6 minutes
(2.33 minutes) on our weighted (unweighted) collections.
Processing our artificial datasets takes much longer, due
to the sheer size of the O(N t) subtrees that are required
to be collected from the trees. For our 3000-taxa dataset,
compression took on average 23.78 minutes (21.86 min-
utes) on our weighted (unweighted) heterogeneous col-
lections. Lastly for the 5000-taxa dataset, compression
took on average 65.88 minutes (55.48 minutes) on our
weighted (unweighted) heterogeneous collections.

TreeZip compression allows consensus trees and other
operations to be cheaply computed. Figure 4 shows the
performance of the consensus operation on both our
weighted biological and artificial heterogeneous collec-
tions as u is increased. We note that the consensus
operation takes longer on weighted datasets. The x axis
denotes the number of unique taxa sets in the file, while
the y axis shows the average execution time in seconds
(log scale). Regardless of the level of heterogeneity, a
consensus tree can be computed in less than a second
on our 150-taxa datasets and less than 5 seconds on our
567-taxa datasets. For our larger artificial datasets, the
operation takes less than a minute to complete.

Set operations (union, intersection and set difference)
compare two TRZ files and thus are dependent on the

number of unique subtrees over both files. As the num-
ber of unique subtrees increase, the longer the compute
time. For our 150-taxa and 567-taxa datasets, this does
not affect the real-time nature of our set operations,
which take less than a minute to compute. For our larger
artificial datasets, set operations can take one to three
minutes to complete.

TRZ files do not need to be decompressed in order
to be analyzed (e.g. producing the consensus). How-
ever, decompression may be necessary if Newick files
are required. For our 150-taxa datasets, decompression
takes on average 38.65 seconds (32.08 seconds) on our
weighted (unweighted) collections. For our 567-taxa
datasets, decompression takes on average 5.74 minutes
(4.81 minutes) on our weighted (unweighted) collections.
For our 3000-taxa datasets, decompression took on aver-
age 33.64 minutes (24.49 minutes) on our weighted (un-
weighted) collections. Lastly for the 5000-taxa datasets,
decompression took on average 84.47 minutes (57.73
minutes) on our weighted (unweighted) collections.

Maximum space savings can be achieved by com-
bining TreeZip with general purpose compression al-
gorithms such as 7zip. For our unweighted biological
datasets, it takes less than a second to compress a TRZ
file with 7zip. For our weighted biological datasets, 11.28
seconds is required. On our unweighted and weighted
artificial datasets, it takes 18.87 seconds and 2.12 min-
utes respectively to compress a TRZ file with 7zip. The
TreeZip+7zip file (like all files produced by general-
purpose compression algorithms) must be decompressed
to a bare TRZ file prior to analysis.

4 CONCLUSIONS

Efficiently archiving and analyzing heterogeneous collec-
tions of trees is an open problem in computational phy-
logenetics. Research groups and tree repositories such
Dryad and TreeBASE can greatly benefit from compress-
ing and comparing related analyses over disparate taxa.
General purpose compression methods, while capable of
achieving space savings, are unable to leverage domain
knowledge about tree collections. To analyze collections
compressed with such programs, datasets will need to be
decompressed, analyzed, and re-compressed to achieve
original space savings, with this process repeating for
subsequent analyses. The scientific community would
greatly benefit from a compact, archival format for het-
erogeneous tree collections that enables fast analysis.

In this paper we discuss our implementation of hetero-
geneous compression in TreeZip, a lossless compression
software package. To the best of our knowledge, no other
domain-based compression algorithm exists for hetero-
geneous collections of trees. TreeZip achieves its space
savings from storing all the evolutionary relationships
and trees in a collection exactly once in the compressed
(TRZ) file. For our datasets with moderate levels of
heterogeneity (less than 100 unique taxa sets), TreeZip
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averages 89.03% space savings for our unweighted col-
lections, and 72.69% space savings for our weighted
collections.

Our experimental analysis on our larger artificial
datasets indicate that TreeZip’s compression algorithm
takes upward of 20 minutes when the global set of
taxa grows exceedingly large. This is only natural, as
there are O(N t) relationships in a collection of t trees
over N taxa. TreeZip pays this run-time cost up-front
in order to enable the close to real-time performance
of subsequent operations on the TRZ file, avoiding the
need for decompression. Analysis operations (e.g. the
consensus) on TRZ files leverage these pre-discovered
relationships, and can be performed very quickly. In
contrast, analysis operations on Newick files require that
the total set of evolutionary relationships be rediscov-
ered every time. TreeZip can be extended to include
additional operations. We welcome suggestions from
the scientific community and will gladly incorporate
additional analytic features into TreeZip.

Lastly, the TRZ file can be further compressed with
general purpose compression algorithms. Combining
TreeZip with 7zip achieves average space savings of
97.34% (81.43%) on our unweighted (weighted) datasets.
Our experimental analyses indicate that compressing
TRZ files with 7zip is quick, making it ideal for long
term storage where space savings is critical.

Future work will improve the performance of
TreeZip’s heterogenous algorithms. As phylogenetic
datasets get larger, TreeZip’s running time becomes
problematic. Other compression algorithms (such as
7zip) reduce their running time on large data by utilizing
all the cores available on a system. Therefore, future
work will concentrate efforts on developing new multi-
core algorithms for TreeZip.

TreeZip can play a central role in the archival of
phylogenetic tree collections. The goal in creating a
heterogeneous tree collection is to generate a consensus
of the work of various scientists. As scientists continue to
piece together the Tree of Life, combining these disparate
analyses into easy to use and compact formats becomes
critical. TreeZip achieves space savings over raw Newick
files, and enables faster analysis. These benefits will
enable scientists to easily detect relationships in such
collections, which may prove valuable in the creation of
phylogenetic tree querying software and future supertree
methods.
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