
Heterogeneous Compression of Large
Collections of Evolutionary Trees

Suzanne J. Matthews

Abstract—Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous

tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large

tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend

TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree

collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree

collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space

savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of

the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere

seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of

97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove

invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous

collections of trees.

Index Terms—Phylogeny, heterogeneity, heterogeneous, compression, trees, collections, TreeZip

Ç

1 INTRODUCTION

PHYLOGENETIC data is growing at an incredible rate.
Modern (“next-gen”) sequencing techniques greatly

reduce the cost of molecular sequencing, enabling scientists
access to larger pools of source genomes. High performance
phylogenetic search programs such as MrBayes [1], [2],
RAxML [3] and BEAGLE [4] can run longer and more com-
prehensive searches, producing larger collections of trees.
As phylogenetic data continues to grow, the question of
how best to archive the resulting tree collections rises to
prominence. In other biological communities, compression
techniques [5], [6], [7] offer some of the best solutions.

Scientists currently respond to the challenge of phyloge-
netic data storage by discarding the bulk of the trees
returned by phylogenetic search and storing only the con-
sensus tree in repositories such as Dryad [8] and TreeBASE
[9]. We have previously established the value of saving
entire tree collections [10], [11], but will not belabor the
point here. Despite this reduction of data and the increasing
cheapness of hard disk space, archiving and organizing
these disparate analyses is no easy task.

Furthermore, it is not easy for researchers to easily relate
and compare their experimental results with the work done
by others. Phylogenetic analysis by definition is heteroge-
neous, with each community of researchers focusing on
their own genus or family of interest. When genera and fam-
ilies are small, it is easy to visually compare competing

hypotheses or analyses. However, as families and genera
grow large, it becomes very difficult to compare competing
(and overlapping) hypotheses of evolutionary relationships.
As we move toward building the Tree of Life, analyses
must be combined and compared to analyses performed on
orders, classes, phylums and kingdoms. Automated meth-
ods for detecting and efficiently storing relationships con-
tained in heterogeneous collections of evolutionary trees
will be crucial for the success of such endeavors.

Previously, we introduced TreeZip [12], [13], a lossless
compression algorithm and software package for phyloge-
netic tree collections. Our goal in designing TreeZip was to
provide an efficient alternative to the Newick format [14],
the most popular way to represent phylogenetic trees. In
the Newick format, matching pairs of parentheses symbol-
ize internal nodes of the tree. A key limitation of the Newick
format is that there areOð2n�1ÞNewick representations for a
single tree with n taxa. Consider tree T1 in Fig. 1. The New-
ick strings (((A,B),C),(D,E)); and ((C,(A,B)),(E,

D)); equally represent the relationships contained in T1.
Lastly, a collection of t trees over n taxa contains OðntÞ total
evolutionary relationships. These relationships must be
rediscovered and related to each other every time the New-
ick file is analyzed.

While general-purpose data compression techniques (e.g.
7zip) can reduce the storage requirements of trees, they can-
not recognize (or leverage) domain-specific information con-
tained in the Newick-formatted file. Thus 100,000 different,
but equivalent Newick string representations of a single tree
is viewed as 100,000 unique strings by 7zip. Furthermore,
the compression process further obscures the evolutionary
relationships contained in a tree collection. The compressed
Newick file must be decompressed for analysis, losing all
space savings gained through compression. Analyzing the

� The author is with the Department of Electrical Engineering and Com-
puter Science, United States Military Academy, West Point, NY 10996.
E-mail: suzanne.matthews@usma.edu.

Manuscript received 30 Dec. 2013; revised 25 Aug. 2014; accepted 19 Oct.
2014. Date of publication 3 Nov. 2014; date of current version 4 Aug. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2014.2366756

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 4, JULY/AUGUST 2015 807

1545-5963� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

uncompressed Newick file requires the overhead cost of
rediscovering the evolutionary relationships contained in it.
Then, the filemust be re-compressed to regain space savings.
This whole process must repeat every time the file needs to
be analyzed.

TreeZip employs domain-based compression to com-
pactly store large tree collections, and is immune to the mul-
tiple representations of input Newick strings. The novelty of
TreeZip is that it stores the evolutionary relationships con-
tained in a tree collection uniquely in the compressed (TRZ)
file, which itself is a unique 1:1 representation of the input
tree collection. TreeZip pays for the OðntÞ cost required to
collect evolutionary relationships exactly once and up-front
through its compression algorithm. This enables subsequent
operations to be performed on the TRZ file in close to real-
time, without losing the space savings achieved though
compression.

Our previous experimental results showed that TreeZip
averages 96 percent space savings on unweighted collec-
tions, and 74 percent space savings on weighted collections
of trees [12]. Compressing TRZ files with 7zip yields addi-
tional space savings, averaging around 99 percent on
unweighted tree collections, and 95 percent on weighted
tree collections [12]. A consequence of phylogenetic search
is that the outputted trees share a high degree of evolution-
ary relationships. The more similar a set of trees, the better
TreeZip’s space savings. TreeZip is currently the most effi-
cient method for compressing and storing large collections
of phylogenetic trees.

However, our previous version of TreeZip was limited to
homogeneous collections of trees. The trees outputted from
phylogenetic search are homogeneous. That is, all trees in
the collection are defined over a single, identical set of taxa.
In heterogeneous collections of trees, every tree in the col-
lection can have a unique set of taxa, or contain a subset of
taxa present in other trees in the collection. For example, the
trees in Fig. 1 are heterogeneous. Likewise, the analyses pro-
duced by separate groups of researchers may not be over
the exact same group of organisms (despite significant over-
lap). The lossless compression of such datasets would there-
fore be beneficial to the scientific community.

In this paper, we discuss TreeZip’s new heterogeneous
algorithms and their performance. Our heterogeneous com-
pression algorithm is centered around uniquely identifying
common subtrees (instead of bipartitions) in a collection of

trees. We simulated heterogeneous datasets of trees based
on two existing biological datasets and two artificial collec-
tions of our creation. In our simulations, we varied the num-
ber of unique taxa sets contained in each tree collection.

Our results indicated that while performance does
understandably degrade as the number of unique taxa sets
in the collection approaches the number of trees, TreeZip’s
compression algorithm is capable of maintaining high space
savings for smaller numbers of unique taxa sets. When the
number of unique taxa sets is below 100, TreeZip is achieves
average space savings of 72.69 percent and 89.03 percent on
weighted and unweighted trees respectively. Furthermore,
operations on heterogeneous collections of trees stored in
TRZ files can be performed quickly. When combined with
7zip, TreeZip achieves average respective space savings of
81.43 percent and 97.34 percent on our weighted and
unweighted datasets. This strongly indicates that TreeZip is
effective at compressing and relating heterogeneous collec-
tions of trees.

The rest of the paper is organized as follows. Section 2
discusses the theory behind our heterogeneous compression
algorithm. Section 3 discusses our experimental evaluation.
We summarize our findings in Section 4.

2 HETEROGENEOUS COMPRESSION

Consider the three trees in Fig. 1. The entire collection of
trees is over the taxa set {A,B,C,D,E,F}. However, each tree
contains a sub-collection of these six taxa. While each tree is
distinct, there are clear relationships between them. For
example, all three trees share clade ((A,B),C), while trees
T1 and T3 share clade (D,E). Our compression algorithm
for heterogeneous trees uniquely identifies and stores such
relationships, significantly reducing storage requirements
and enabling fast analysis.

2.1 Representation of Heterogeneous Trees

Any phylogenetic tree can be decomposed into a set of
bipartitions. A bipartition is a cut on an edge in the tree that
partitions the taxa into two sets. Each tree with n taxa neces-
sarily has 2ðn� 1Þ total bipartitions. While quartets [15] are
another common building block for trees, bipartitions are
preferable for compression. First, while a tree over n taxa

has O n
4

� �
quartets, it has OðnÞ bipartitions. Second, while

there are a greater number of total possible bipartitions than

quartets (Oð2nÞ vs O n
4

� �
), trees returned from phylogenetic

search tend to be very similar to each other, and thus have
high levels of bipartition sharing.

Our empirical analysis over homogeneous biological tree
collections have confirmed that the set of total bipartitions
over any particular collection of trees is very small, due to
the high degree of similarity between the trees [12], [16].
The goal of heterogeneous compression of trees is to create
a consensus of the work done by a group of scientists who
operate over largely similar (but not identical) sets of taxa.
We hypothesize that heterogeneous trees over a common
taxa set returned from multiple phylogenetic searches
should also contain high degrees of similarity, as all should
have converged on similar solution spaces.

Bipartitions are not effective at representing heteroge-
neous collections of trees. For the rooted trees in Fig. 1, tree

Fig. 1. Sample collection of three heterogeneous trees, consisting of
common clades (D,E) and ((A,B),C) (circled).

808 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 4, JULY/AUGUST 2015

T1’s non-trivial bipartitions are ABCjDE, ABjCDE, and
DEjABC. T2 contains bipartitions ABjCD and ABCjD.
Lastly, T3 contains bipartitions ABCjDEF , ABjCDEF ,
DEjABCF and DEF jABC. Despite the high level of simi-
larity between the underlying structure of the trees, there
are no common bipartitions within our group of trees.

In order to support heterogeneous trees, we shifted from
a bipartition model to a subtree model. A subtree is defined
as the set of taxa residing directly below a cut on any internal
edge or adjacent to the root. Each tree contains 2ðn� 1Þ sub-
trees. In Fig. 1, T1 contains subtrees {ABC}, {AB}, and {DE}.
T2 contains subtrees {AB}, {ABC}, and {D}. Lastly, T3 con-
tains subtrees {ABC}, {AB}, {DE}, and {DEF }. Observe that
all three trees in Fig. 1 contain subtrees {AB} and {ABC},
and trees T1 and T3 also share the subtree {DE}. By viewing
trees as a collection of subtrees rather than a collection of
bipartitions, we are able to detect relationships within a het-
erogeneous collection of trees.

2.2 Compression Algorithm

For a given collection of trees, the set of unique taxa over the
entire collection is first determined and ordered lexicograph-
ically. We refer to this global set of taxa asG, whereN ¼ jGj.
For each tree, we collect its subtrees via depth-first search.
Each subtree is uniquely represented by aN -length bitstring
(B). Each taxon in our lexicographic ordering is assigned an
index i and the corresponding bit in B (bi) represents the
presence or absence of that taxon in a particular subtree. If a
taxon occurs in a particular subtree, the corresponding bit is
set to 1. Otherwise, it is set to 0. For example, the subtree
{AB} in all three trees is represented by the bitstring 110000,
where the first bit denotes the presence of ‘A’ in the subtree
and the second denotes the presence of ‘B’ in the subtree. We
note that for any tree, the set of taxa n � N over which the
tree is defined can be obtained by performing a bitwise OR
operation over all the bitstrings derived from that tree.
TreeZip’s heterogeneous compression algorithm is OðN tÞ,
which is the time required to collect the OðN Þ subtrees from
each of the t trees in a collection.

2.2.1 Universal Hashing of Subtrees and Trees

We use universal hashing to quickly capture the set of
unique subtrees within the tree. Let t represent the total
number of trees in our collection of interest. For each taxon i
from 1 . . .N , two random numbers are generated, ri and si.
Each bitstring (B) representation of our subtrees is then fed
into two hashing functions [16], [17] h1 and h2,

h1ðBÞ ¼
XN

i¼1

bi � ri modm1;

h2ðBÞ ¼
XN

i¼1

bi � si modm2;

where m1 is the first prime number greater than N � t and
m2 is the first prime greater than N � t� c, where c is a
large constant number. Thus, each subtree is uniquely
defined by h1ðBÞ:h2ðBÞ (where : represents concatenation).
Our las-vegas randomized hashing strategy guarantees that
h1ðB1Þ:h2ðB1Þ ¼ h1ðB2Þ:h2ðB2Þ iff B1 ¼ B2. By storing an

explicit bitstring representation of each subtree in our hash
table, we can always determine if B1 ¼ B2, guaranteeing us
0 percent probability of error. To eliminate the possibility of
an error state, our code terminates and notifies the user to
restart the program if such a collision is detected. This
would occur due to repetition in our generated set of ran-
dom numbers (ri; si), and regenerating the random numbers
would fix this problem. In practice, these collisions have
never occurred. For each subtree, we store the set of ids of
the trees that contain it. For weighted collections, we also
store branch lengths.

Let k denote the number of unique subtrees in our set
of t trees. We can represent each tree T as a k-bit bit-
string (A), where each position ai 2 A denotes a unique
subtree in a collection. Ordering of subtrees do not mat-
ter, so long as the ordering is consistent for all trees. If T
contains subtree i, then ai ¼ 1. Otherwise, ai ¼ 0. For
each subtree i from 1 . . . k, two new random numbers are
generated, oi and pi. We define two additional hashing
functions [16] h3 and h4,

h3ðAÞ ¼
Xk

i¼1

ai � oi modm3;

h4ðAÞ ¼
Xk

i¼1

ai � pi modm4;

where m3 is the first prime number greater than t and m4 is
the first prime number greater than t� c. Thus, each unique
tree in the collection is defined by h3ðAÞ:h4ðAÞ. Our las-
vegas randomized hashing strategy once again guarantees
that h3ðA1Þ:h4ðA1Þ ¼ h3ðA2Þ:h4ðA2Þ iff A1 ¼ A2 by storing
the bitstring representation of each tree. Thus, we can
always determine errors in our approach (see details above),
and terminate the process if necessary.

2.2.2 The TRZ Encoding Scheme

Once the hash tables consisting of the unique subtrees and
trees are collected, the last step is to write these contents to
the TreeZip compressed (TRZ) file. One of the primary goals
of the TRZ format is to be a compact representation that high-
lights the evolutionary relationships contained in a collection
of trees. Storing encoded versions of these relationships is
important, as it allows operations (e.g. computing the
consensus) to be performed directly and quickly on the TRZ
file, while reducing space requirements. As such, we
eschewed binary compression schemes such as Huffman
encoding [18] and LZW [19], which obscure the relationships
in a collection of trees. Run-length encoding ensures reason-
able space savings while enabling analysis to be performed
directly on the TRZ file. We note that since the TRZ file is
text, it can be further compressed with general-purpose text
compression algorithms such as 7zipwith little overhead.

The first three lines of the compressed TRZ file represent
the global set of taxa names, the number of unique trees in
the file, and the number of unique subtrees. If the file is het-
erogeneous, we add a ’H’ flag on the line designating the
unique set of trees. We first process the hash table that iden-
tified unique subtrees. Prior to encoding, subtrees are stored
by the order of the number of 1s they contain, with ties

MATTHEWS: HETEROGENEOUS COMPRESSION OF LARGE COLLECTIONS OF EVOLUTIONARY TREES 809

broken lexicographically. This ensures the 1:1 representa-
tion of a TRZ file to its collection of trees.

Afterward, we process each row in the hash table con-
taining unique subtrees. Each row represents a separate line
in the compressed file. There are three components (bit-
strings, tree ids, branch lengths) to a TRZ line. The full
details of TreeZip’s encoding scheme can be found in [12].
Each bitstring is run-length encoded. Duplicate trees are
removed from each row, and are encoded using TreeZip’s
encoding procedure. After the set of trees are encoded, the
set of branch lengths for each tree is encoded and appended
to the end of the row. At the end of the file, we encode the
hash-table that identified unique trees in the collection. This
table ensures that we will be able to rebuild the collection
fully and correctly if decompression is required.

2.3 Computing Consensus and Other Extensible
Operations

TreeZip stores trees more efficiently than Newick files. Fur-
thermore, since the TRZ file stores only the unique set of
subtrees in a tree collection, we can perform analysis on a
TRZ file much quicker than than we can on a Newick file.
Previously, we established TreeZip’s equivalence to Newick
files on homogeneous collections of trees and showed that
operations on TRZ files are much faster than equivalent
operations on Newick files [12]. By extending TreeZip’s
functionality to encompass heterogeneous collections,
we’ve also extended TreeZip’s ability to perform extensible
operations on these collections.

Of greatest significance is TreeZip’s ability to compute
the strict or majority consensus tree of an encoded heteroge-
neous collection of trees, without any need for decompres-
sion. Unlike the consensus tree of a homogenous collection,
the heterogeneous consensus tree may not contain the total
set of N taxa in the collection. Consider the three trees in
Fig. 1. TreeZip outputs ((A,B),C); as the strict consensus
for this collection, as these underlying subtrees appear in
every collection. Likewise, TreeZip reports (((A,B),C),

(D,E)); as the majority consensus, as these underlying
subtrees appear in at least two of the three trees. To the best
of our knowledge, no other program exists that can com-
pute the strict or majority consensus of a collection of trees
over a heterogeneous taxa set.

Furthermore, TreeZip can directly compare collections of
heterogeneous trees. Since the TRZ format is a 1:1 represen-
tation of a collection of trees, TreeZip can compute the total
set of unique trees over two given collections (union), the set
of unique trees that are contained in both collections (inter-
section), and the set of unique trees that are contained in one
collection, but not the other (set difference). All these opera-
tions can be performed close to real-time without needing
to decompress the TRZ file.

2.4 Decompression Algorithm

Since the TRZ file is designed to be an archive format for
large collections of trees, it is not meant to be decompressed
frequently. That said, TreeZip has a decompression routine
that returns the set of trees in Newick format. The proce-
dure is largely identical to that described in [12]. The TRZ
file is decoded, and for each unique tree, the set of subtree

bitstrings contained within them is stored. Each tree is then
rebuilt sequentially, using the second table (which tracks
duplicate trees) as reference.

To properly rebuild each tree, a “star” tree bitstring is
used as the base. With the processing of each additional
subtree, internal nodes are added, until the entire tree is
rebuilt. In the case of homogeneous collections, this “star”
tree is an n-length bitstring, where each bit is set to 1. For
heterogeneous datasets, each tree can have some set of n
taxa, where n � N . Thus for each tree, it is necessary to cal-
culate the corresponding “star tree”. To do this, we initially
populate anN -length bitstring of all 0s for each tree. By per-
forming an OR operation over all the subtrees contained in
each tree, one gets appropriate star bitstring associated with
each tree. One pass over the entire hash table is sufficient to
generate the star bitstrings of all the trees in a collection.

3 EVALUATION

Our implementation of TreeZip used in the following
experiments is free to download at https://github.com/
suzannejmatthews/treezip/. Experiments were conducted
on a 64-bit Intel machine with two quad-core processors
and 32 GB of RAM running Ubuntu Linux 12.04. TreeZip is
written in C++ and compiled with g++ 4.6.3 with the -03
compiler option.

3.1 Description of Simulated Datasets

In order to build the Tree of Life, researchers must use a
variety of different methods to collect and combine their
analyses, which will have varying levels of heterogeneity.
By studying how heterogeneity affects our approach, we
gain clues on how best to combine and store such collec-
tions. Simulated datasets allow us to test different scenarios
for how phylogenetic researchers may combine disparate
tree collections.

The compression quality of our algorithm is dependent
on the number of unique subtrees in the collection. As the
heterogeneity of a dataset increases, space savings is
sharply reduced due to the increased size of the underlying
set of unique subtrees. Simulated datasets allow us to pre-
cisely model and study the rate of this degradation.

We generate heterogeneous datasets by adding heteroge-
neity to homogeneous datasets. For each dataset, we ran-
domly partition the total set of trees into u equally sized
partitions, randomly remove a percentage of taxa from each
partition, and recombine the partitions together. This yields
a heterogeneous dataset with u taxa sets, N total taxa, and t
trees. A taxa set is a unique set of taxa over which a collec-
tion of trees is defined. Consider Fig. 1 where each tree has
a unique set of taxa, yielding three unique taxa sets in the
collection. When u ¼ 1, the collection is identical to the
homogeneous source dataset. As u increases, the number of
unique taxa sets and subtrees in a dataset also increases,
resulting in greater levels of heterogeneity.

Our source homogeneous datasets include two existing
biological tree collections and two artificial collections of
our creation. In our experimentation, we considered trees
with weighted and unweighted branches. Our unweighted
collections are identical to our weighted ones, except that all
branch lengths were removed.

810 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 4, JULY/AUGUST 2015

We obtained biological datasets from two previously
published Bayesian phylogenetic analyses that utilized
MrBayes [20] . The first biological dataset consists of 20,000
unique trees obtained from an analysis of 150 taxa [21]. The
weighted (unweighted) version of the Newick file for this
dataset is 67 MB (16 MB). There are 1,318 (1,168) unique
subtrees out of 5.9 million possible in the weighted
(unweighted) collections. The second biological dataset con-
sists of 33,306 trees obtained from an analysis of 567 angio-
sperm taxa [22]. Of the 33,306 trees, 33,169 are unique. The
size of the weighted (unweighted) Newick file for this col-
lection is 428 MB (105 MB). There are 3,011 (2,444) unique
subtrees out of � 37:7 million possible in the weighted
(unweighted) sets.

To test TreeZip’s performance on massive tree collec-
tions, we simulated two large artificial datasets that have
similar majority consensus rates and proportion of subtrees
to our previously described biological collections. The ratio
of subtrees to taxa in the 150-taxa and 567-taxa datasets
were 7.8 and 4.3 respectively. Using HashCS [23], the major-
ity consensus rates for the 150-taxa and 567-taxa datasets
were determined to be 85.7 and 92.5 percent respectively.

Our first artificial collection contains 3,000 taxa and
20,000 unique trees, and has a majority consensus rate of
85.7 percent and a subtree ratio of 7.6. The weighted
(unweighted) version of the Newick file for this dataset is
1.4 GB (380 MB). There are 25,949 (22,949) unique subtrees
out of � 199 million possible in our weighted (unweighted)
sets. Our second artificial collection contains 5,000 taxa and
20,000 unique trees and has a majority consensus rate of
92.5 percent and a subtree ratio of 4.4. The size of the
weighted (unweighted) Newick file for this collection is 2.4
GB (647 MB). There are 27,004 (22,004) unique subtrees out
of � 332million possible in our weighted (unweighted) sets.

3.2 Measuring Performance

For each homogeneous dataset, we generated heteroge-
neous collections of t trees, and vary u from 1 . . . 1; 000. For
each heterogeneous dataset produced, we record the
amount of space savings the TRZ file has over the corre-
sponding Newick file. The space savings S is measured as

S ¼ ð1� jTRZj
jNewickjÞ � 100. Space savings of 0 percent means

there is no reduction of file size. The goal for any compres-
sion algorithm is achieve space savings close to 100 percent.
We also measure the running time of our compression, set
operations, and decompression methods.

3.3 Space Savings Performance Results

Fig. 2 shows the performance of TreeZip on our heteroge-
neous collections of trees. Figs. 2a and 2b depict the
results on our biological and artificial datasets respec-
tively. The x-axis denotes the number of unique taxa sets
in the file. The y-axis denotes the amount of space savings
the TRZ file achieves over the Newick file. Consistent
with prior results [12], TreeZip achieves an average of
74.44 percent space savings on weighted datasets, and
96.43 percent space savings on unweighted data sets
when u ¼ 1, the homogeneous case. This discrepancy is
caused by the presence of branch lengths.

As the number of unique taxa sets contained in a collec-
tion increases, the space savings degrades. As u increases
to 100, average space savings of our unweighted biological
datasets dips to 86 percent. In comparison, the average
space savings of our unweighted artificial datasets reduces
to 76 percent. However, when u is increased further to
1,000 the average space savings of our unweighted biologi-
cal and artificial datasets drop to 55 and 14.5 percent
respectively. This rapid decrease in space savings is due to
the number of underlying subtrees exploding. Since our
compression approach centers around identifying unique
subtrees in a collection, performance degrades as the num-
ber of unique taxa sets approaches the number of trees in
the collection.

The effect of subtree explosion is muted in our weighted
datasets. As u increases to 100, our biological and artificial
weighted datasets slightly decrease to 71 and 70 percent
average space savings. However, as the number of unique
taxa sets in the collection increases to 1,000, the average
space savings for our weighted biological datasets dip to
64 percent. The average space savings for our artificial data-
sets decrease to 54 percent. These results are promising, as
the majority of phylogenetic analyses are weighted. Even
with high levels of heterogeneity (u ¼ 1;000), the resulting
TRZ file is at most half the size of the Newick file.

Fig. 2. TreeZip performance on heterogeneous trees.

MATTHEWS: HETEROGENEOUS COMPRESSION OF LARGE COLLECTIONS OF EVOLUTIONARY TREES 811

Despite the degradation in our larger datasets, we can still
achieve additional space savings when we combine TreeZip
with general purpose compression algorithms. Fig. 3 shows
the additional space savings resulting from compressing the
TRZ files with 7zip. Figs. 3a and 3b show the space savings
on our biological and artificial collections respectively. Tree-
Zip+7zip achieves average spaces savings of 96.29 and
96.3 percent on our unweighted biological and artificial data-
sets. For our weighted biological and artificial datasets, Tree-
Zip+7zip averages 81.83 and 80.86 percent respectively.

3.4 Runtime Performance Results

Compression is a one-time cost TreeZip pays up-front to
enable space savings and the high speed of subsequent
operations. Due to the additional time needed to determine
the global set of taxa (G), heterogeneous compression is on
average 36.4 percent slower than its homogeneous counter-
part. For our 150-taxa datasets, compression took on aver-
age 27.07 seconds (15.61 seconds) on our weighted
(unweighted) collections. For our 567-taxa datasets, com-
pression took on average 3:6 minutes (2:33 minutes) on our
weighted (unweighted) collections. Processing our artificial
datasets takes much longer, due to the sheer size of the
OðN tÞ subtrees that are required to be collected from the
trees. For our 3000-taxa dataset, compression took on aver-
age 23:78 minutes (21:86 minutes) on our weighted
(unweighted) heterogeneous collections. Lastly for the 5000-
taxa dataset, compression took on average 65:88 minutes
(55:48 minutes) on our weighted (unweighted) heteroge-
neous collections.

TreeZip compression allows consensus trees and other
operations to be cheaply computed. Fig. 4 shows the perfor-
mance of the consensus operation on both our weighted bio-
logical and artificial heterogeneous collections as u is
increased. We note that the consensus operation takes lon-
ger on weighted datasets. The x axis denotes the number of
unique taxa sets in the file, while the y axis shows the aver-
age execution time in seconds (log scale). Regardless of the
level of heterogeneity, a consensus tree can be computed in
less than a second on our 150-taxa datasets and less than
5 seconds on our 567-taxa datasets. For our larger artificial
datasets, the operation takes less than a minute to complete.

Set operations (union, intersection and set difference)
compare two TRZ files and thus are dependent on the num-
ber of unique subtrees over both files. As the number of
unique subtrees increase, the longer the compute time. For
our 150-taxa and 567-taxa datasets, this does not affect the
real-time nature of our set operations, which take less than
a minute to compute. For our larger artificial datasets, set
operations can take one to 3 minutes to complete.

TRZ files do not need to be decompressed in order to be
analyzed (e.g. producing the consensus). However, decom-
pression may be necessary if Newick files are required. For
our 150-taxa datasets, decompression takes on average
38:65 seconds (32:08 seconds) on our weighted (unweighted)
collections. For our 567-taxa datasets, decompression takes
on average 5:74 minutes (4:81 minutes) on our weighted
(unweighted) collections. For our 3000-taxa datasets, decom-
pression took on average 33:64 minutes (24:49 minutes) on
our weighted (unweighted) collections. Lastly for the 5000-
taxa datasets, decompression took on average 84:47 minutes
(57:73minutes) on ourweighted (unweighted) collections.

Maximum space savings can be achieved by combining
TreeZip with general purpose compression algorithms such
as 7zip. For our unweighted biological datasets, it takes less

Fig. 3. TreeZip+7zip performance on heterogeneous trees.

Fig. 4. Performance of consensus operations on weighted biological and
artificial datasets.

812 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 4, JULY/AUGUST 2015

than a second to compress a TRZ file with 7zip. For our
weighted biological datasets, 11:28 seconds is required. On
our unweighted and weighted artificial datasets, it takes
18:87 seconds and 2:12 minutes respectively to compress a
TRZ file with 7zip. The TreeZip+7zip file (like all files pro-
duced by general-purpose compression algorithms) must
be decompressed to a bare TRZ file prior to analysis.

4 CONCLUSIONS

Efficiently archiving and analyzing heterogeneous collec-
tions of trees is an open problem in computational phyloge-
netics. Research groups and tree repositories such Dryad
and TreeBASE can greatly benefit from compressing and
comparing related analyses over disparate taxa. General
purpose compression methods, while capable of achieving
space savings, are unable to leverage domain knowledge
about tree collections. To analyze collections compressed
with such programs, datasets will need to be decompressed,
analyzed, and re-compressed to achieve original space sav-
ings, with this process repeating for subsequent analyses.
The scientific community would greatly benefit from a com-
pact, archival format for heterogeneous tree collections that
enables fast analysis.

In this paper we discuss our implementation of heteroge-
neous compression in TreeZip, a lossless compression soft-
ware package. To the best of our knowledge, no other
domain-based compression algorithm exists for heteroge-
neous collections of trees. TreeZip achieves its space savings
from storing all the evolutionary relationships and trees in a
collection exactly once in the compressed (TRZ) file. For our
datasets with moderate levels of heterogeneity (less than
100 unique taxa sets), TreeZip averages 89.03 percent space
savings for our unweighted collections, and 72.69 percent
space savings for our weighted collections.

Our experimental analysis on our larger artificial data-
sets indicate that TreeZip’s compression algorithm takes
upward of 20 minutes when the global set of taxa grows
exceedingly large. This is only natural, as there are OðN tÞ
relationships in a collection of t trees over N taxa. TreeZip
pays this run-time cost up-front in order to enable the close
to real-time performance of subsequent operations on the
TRZ file, avoiding the need for decompression. Analysis
operations (e.g. the consensus) on TRZ files leverage these
pre-discovered relationships, and can be performed very
quickly. In contrast, analysis operations on Newick files
require that the total set of evolutionary relationships be
rediscovered every time. TreeZip can be extended to
include additional operations. We welcome suggestions
from the scientific community and will gladly incorporate
additional analytic features into TreeZip.

Lastly, the TRZ file can be further compressed with gen-
eral purpose compression algorithms. Combining TreeZip
with 7zip achieves average space savings of 97.34 percent
(81.43 percent) on our unweighted (weighted) datasets. Our
experimental analyses indicate that compressing TRZ files
with 7zip is quick, making it ideal for long term storage
where space savings is critical.

Future work will improve the performance of TreeZip’s
heterogeneous algorithms. As phylogenetic datasets get
larger, TreeZip’s running time becomes problematic. Other

compression algorithms (such as 7zip) reduce their running
time on large data by utilizing all the cores available on a
system. Therefore, future work will concentrate efforts on
developing new multi-core algorithms for TreeZip.

TreeZip can play a central role in the archival of phyloge-
netic tree collections. The goal in creating a heterogeneous
tree collection is to generate a consensus of the work of vari-
ous scientists. As scientists continue to piece together the
Tree of Life, combining these disparate analyses into easy to
use and compact formats becomes critical. TreeZip achieves
space savings over raw Newick files, and enables faster
analysis. These benefits will enable scientists to easily detect
relationships in such collections, which may prove valuable
in the creation of phylogenetic tree querying software and
future supertree methods.

ACKNOWLEDGMENTS

The author is grateful for the mentorship of T.L. Williams
in the earlier stages of this work. This work was sup-
ported by the US National Science Foundation under
Grants DEB-0629849, IIS-0713168, and IIS-1018785. This
work was also supported in part by the Dissertation Fel-
lowship program at Texas A&M University. The opinions
in this paper are those of the authors and do not necessar-
ily reflect the opinions of the US Department of Defense,
or the U.S. Army.

REFERENCES

[1] F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian phyloge-
netic inference under mixed models,” Bioinformatics, vol. 19,
no. 12, pp. 1572–1572, Aug. 2003.

[2] G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist,
“Parallel metropolis-coupled Markov chain Monte Carlo for
Bayesian phylogenetic inference,” Bioinformatics, vol. 20, pp. 407–
415, 2004.

[3] A. Stamatakis, “RAxML-VI-HPC: Maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed models,”
Bioinformatics, vol. 22, no. 21, pp. 2688–2690, 2006.

[4] D. L. Ayres, A. Darling, D. J. Zwickl, P. Beerli, M. T. Holder, P. O.
Lewis, J. P. Huelsenbeck, F. Ronquist, D. L. Swofford, M. P. Cum-
mings, A. Rambaut, and M. A. Suchard, “BEAGLE: An applica-
tion programming interface and high-performance computing
library for statistical phylogenetics,” Syst. Biol., vol. 61, no. 1,
pp. 170–173, 2012.

[5] R. Giancarlo, D. Scaturro, and F. Utro, “Textual data compression
in computational biology: A synopsis,” Bioinformatics, vol. 25,
no. 13, pp. 1575–1586, Feb. 2009.

[6] M. C. Brandon, D. C. Wallace, and P. Baldi, “Data structures and
compression algorithms for genomic sequence data,” Bioinformat-
ics, vol. 25, no. 14, pp. 1731–1738, 2009.

[7] S. Deorowicz and S. Grabowski, “Compression of DNA sequence
reads in FASTQ format,” Bioinformatics, vol. 27, pp. 860–862, 2011.

[8] H. C. White, S. Carrier, A. Thompson, J. Greenberg, and R.
Scherle, “The Dryad data repository: A Singapore framework
metadata architecture in a DSpace environment,” in Proc. Int.
Conf. Dublin Core Metadata Appl., 2008, pp. 157–162.

[9] W. Piel, M. Donoghue, and M. Sanderson, “TreeBASE: A database
of phylogenetic information,” in Proc. 2nd Int. Workshop Species,
2000, pp. 41–47.

[10] S.-J. Sul, S. J. Matthews, and T. L. Williams, “Using tree diversity
to compare phylogenetic heuristics,” BMC Bioinformatics, vol. 10,
no. Suppl 4, p. S3, 2009.

[11] S. J. Matthews and T. L. Williams, “MrsRF: An efficient mapre-
duce algorithm for analyzing large collections of evolutionary
trees,” BMC Bioinformatics, vol. 11, no. Suppl 1, p. S15, 2010.

[12] S. J. Matthews and T. L. Williams, “An efficient and extensible
approach for compressing phylogenetic trees,” BMC Bioinformat-
ics, vol. 12, no. Suppl 10, p. S16, 2011.

MATTHEWS: HETEROGENEOUS COMPRESSION OF LARGE COLLECTIONS OF EVOLUTIONARY TREES 813

[13] S. J. Matthews, S.-J. Sul, and T. L. Williams, “A novel approach for
compressing phylogenetic trees,” in Bioinformatics Research and
Applications (ser. Lecture Notes in Computer Science), vol. 6053.
New York, NY, USA: Springer-Verlag, 2010, pp. 113–124.

[14] J. Felsenstein. (2009, Sep.). The Newick file format. [Online].
Available: http://evolution.genetics.washington.edu/phylip/
newicktree.html

[15] J. Felsenstein, Inferring Phylogenies. Sunderland, MA, USA: Sinauer
Assoc., 2003.

[16] S. J. Matthews, “Efficient algorithms for comparing, storing, and
sharing large collections of evolutionary trees,” Ph.D. dissertation,
Dept. Comput. Sci. Engi., Texas A&M Univ., College Station, TX,
USA, 2012.

[17] N. Amenta, F. Clarke, and K. S. John, “A linear-time majority tree
algorithm,” in Proc. Workshop Algorithms Bioinformat., 2003,
pp. 216–227.

[18] J. V. Leeuwen, “On the construction of Huffman-trees,” in Proc.
3rd Colloq. Automata, Lang. Programming, 1976, pp. 382–410.

[19] M. R. Nelson, “LZW data compression,” Dr. Dobb’s J., vol. 14,
no. 10, pp. 29–36, 1989.

[20] J. P. Huelsenbeck and F. Ronquist, “MRBAYES: Bayesian infer-
ence of phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–
755, 2001.

[21] L. A. Lewis and P. O. Lewis, “Unearthing the molecular phylodi-
versity of desert soil green algae (chlorophyta),” Syst. Biol.,
vol. 54, no. 6, pp. 936–947, 2005.

[22] D. E. Soltis, M. A. Gitzendanner, and P. S. Soltis, “A 567-taxon
data set for angiosperms: The challenges posed by Bayesian analy-
ses of large data sets,” Int. J. Plant Sci., vol. 168, no. 2, pp. 137–157,
2007.

[23] S.-J. Sul and T. L. Williams, “An experimental analysis of consen-
sus tree algorithms for large-scale tree collections,” in Proc. 5th Int.
Symp. Bioinformat. Res. Appl., 2009, pp. 100–111.

Suzanne J. Matthews is an Assistant Professor of Computer Science
in the Department of Electrical Engineering & Computer Science at the
United States Military Academy, West Point. She received her Ph.D.
degree in Computer Science from Texas A&M University, and her M.S.
and B.S. degrees in Computer Science from Rensselaer Polytechnic
Institute. She was recognized as a Texas A&M University Dissertation
Fellow during the final year of her Ph.D. studies, and served as a
research assistant for three years prior. While completing her M.S. at
Rensselaer, Dr. Matthews was recognized as a Master Teaching Fel-
low, and held research and teaching assistantships. As an undergradu-
ate, she was awarded a summer research grant through the CRA-W
Distributed Mentoring Program (now DREU). She is a member of the
Upsilon Pi Epsilon and Phi Kappa Phi honor societies, and the Associa-
tion of Computing Machinery. Her research interests lie in computational
biology, high performance computing, data mining, experimental algo-
rithmics, and version control systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

814 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 4, JULY/AUGUST 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

