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Accurate Simulation of Large Collections of
Phylogenetic Trees
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Abstract—Phylogenetic analyses are growing at a rapid rate, producing increasingly large collections of trees. Scientists rarely share
their tree collections, making it difficult for researchers to develop methods that anticipate and respond to this growth of data. While
common methods for simulating phylogenetic trees focus on random topologies, the tree collections returned from phylogenetic search
are rarely random and contain a high degree of topological similarity. In this paper, we introduce TreeSim, a software package that
simulates large tree collections from published consensus trees. TreeSim implements our new simulation algorithm, the combined
consensus. Our experimental results indicate that simulating trees based on the combined consensus produces collections whose
topological diversity most closely resemble the trees returned from phylogenetic search. We expect that TreeSim will play a critical role
in guiding the algorithmic development of new approaches that support the growth of phylogenetic data.
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1 INTRODUCTION

MODERN phylogenetic analyses are rapidly increas-
ing in size and scope. The growing cheapness

of “next-gen” sequencing techniques and ubiquity of
high performance phylogenetic search packages such as
MrBayes [1] enable scientists to analyze molecular data
encompassing several hundreds of taxa, or organisms.
The goal of all phylogenetic analysis is to produce a phy-
logenetic tree, a binary tree depicting the evolutionary
relationships between a set of taxa.

Large phylogenetic searches produce tree collections
that consist of tens to hundreds of thousands of trees.
Scientists combine these tree collections into a single
tree called the consensus, discarding the source trees in
the process. Despite extensive research [2], [3], [4], [5]
discussing the importance of such collections, scientists
do not retain or publish the collections returned from
phylogenetic search. Once discarded, the trees produced
by a particular phylogenetic analysis are lost forever.
Only 11 percent of the papers examined in a recent
study [4] provide the data needed to re-run a phyloge-
netic search. Even if this data is available, re-running the
heuristic search can take weeks to months to complete,
and never guarantees the same set of trees.

In addition to impeding reproducibility, the sparsity
of tree collections prevents the creation of new methods
that can accommodate the growth of phylogenetic data.
In the absence of real tree collections, scientists who
design phylogenetic methods are forced to simulate tree
collections. However, most of the available methods
focus on generating random topologies. Random tree
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collections are a poor choice for algorithm writers, as the
trees returned from phylogenetic search are rarely ran-
dom, and contain a high degree of topological similarity
to each other [3], [6], [7]. Fast software that produces
collections that mimic the topological diversity found in
real tree collections is essential to ensure that new and
existing algorithms can handle the ever-growing datasets
produced by modern phylogenetic analyses.

In this paper we describe TreeSim, an application
that simulates tree collections from published consen-
sus trees. These trees commonly appear in biological
studies that conduct phylogenetic analysis, along with
statistics on the number of trees outputted by the search
heuristic and the number of taxa under study. TreeSim
implements the combined consensus simulation algorithm,
a novel method that simulates a collection based on
inputted strict and majority consensus trees.

We use three large, diverse biological tree collections
from published phylogenetic analyses to benchmark the
different simulation algorithms. Robinson-Foulds dis-
tance [8], the most popular distance metric for compar-
ing trees, is used to measure topological diversity in
our collections under study. Our experimental results
indicate that the collections produced by the combined
consensus algorithm most closely reflect the topological
diversity found in tree collections returned from phylo-
genetic search. Since the majority and strict consensus
trees are usually published in biological studies, our
method will allow researchers to simulate realistic collec-
tions when real datasets are unavailable. We anticipate
that TreeSim will aid in the benchmarking and creation
of novel methods for phylogenetic data analysis.

2 PRIOR WORK
Approaches for simulating tree collections typically re-
quire the creation of an n-taxa starting tree. Kuhner
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and Felsenstein [9] describe a method for generating a
random starting tree with the goal of creating individual
topologies with varying levels of reconstruction diffi-
culty and realistic branch lengths [9]. A simpler random
starting tree can be constructed as follows. Starting
with a pool of n taxa, randomly partition it into two
daughter sets, dropping edges between the parent and
the children. Repeat the process recursively until each
taxon occupies a single leaf in the tree. A fully resolved
unrooted starting tree contains n − 3 internal edges (or
bipartitions), and requires O(n) time to construct.

A collection of t identical trees over n taxa is con-
structed by duplicating a single n-taxa starting tree t
times. A collection of t different trees is produced by
generating t separate n-taxa random starting trees. The
collections produced by these methods are either iden-
tical or maximally dissimilar. However, trees produced
from phylogenetic search typically do not reside at ei-
ther extreme, and contain a high degree of topological
similarity, reflecting the close relationship between the
produced trees.

2.1 Consensus resolution approaches
Sul and Williams [10] use the consensus resolution to
simulate a collection of trees. The consensus resolution
(r) is the percentage of bipartitions from a source tree
collection (T ) that is included in the constructed consen-
sus tree. The strict consensus resolution is the percentage
of bipartitions in the consensus tree that are contained
in every tree in T . The majority consensus resolution
is percentage of bipartitions that are contained in a
majority (> 50%) of the trees in T . Note that the majority
consensus necessarily must be at least as large as the
strict consensus resolution.

For example, a majority consensus of 100 percent indi-
cates that every bipartition in the consensus tree appears
in a majority of the trees in T . A strict consensus of 100
percent denotes that all the trees in the collection are
identical. A strict consensus of 50 percent indicates that
50 percent of the bipartitions in the consensus tree ap-
pear in every tree in T . A majority consensus of 0 percent
indicates that no bipartition appears in the majority of
the trees (a star topology), a result that implies that trees
in M are very dissimilar to each other. The strict and
majority consensus algorithms below closely resemble
those originally described [10] by Sul and Williams. In
the original algorithms, bipartitions were sampled from
a provided random starting tree.

A collection of t trees over n taxa with a strict con-
sensus resolution s is created by sampling s percent
of the n − 3 bipartitions of the starting tree, producing
a “seed” topology which is assigned to each of the t
output trees. At this point, each of the t output trees
is an identical strict consensus tree with resolution s,
implying that the remaining (1− s)× 100 percent of the
bipartitions in each tree are unresolved. Each output tree
is fully resolved to a binary tree by randomly adding the
remaining bipartitions.

To simulate a collection with majority consensus reso-
lution m, we randomly sample m percent of the starting
tree’s bipartitions; call this set R. For each bipartition
b ∈ R, we generate a random number p between 50
and 100 and assign b to p percent of the t output trees.
We then iteratively build each tree with its assigned
bipartitions, resolving each tree fully to a binary tree by
adding random bipartitions as necessary.

2.2 Shortcomings

Both algorithms suffer from some shortcomings. The
trees in a collection simulated from the strict consensus
are biased toward a single core topology, and may
have no other sources of similarity. A collection of trees
simulated from the majority consensus rate enjoys a
more even distribution of bipartitions. However, the
bipartitions in a consensus tree with a majority resolu-
tion rate of 100 percent need only appear in 50 percent
of the source trees. Therefore, up to 50 percent of the
n − 3 bipartitions in each tree are left to be randomly
resolved. The resulting tree collection may contain too
much topological diversity, despite having a high ma-
jority consensus rate.

Sul and Williams kindly make their code for
the strict consensus and majority consensus algo-
rithms available in packages unresolverstr [11] and
unresolvermaj [12], respectively. Unfortunately, the
published code produces malformed topologies on large
datasets and requires a prohibitive amount of memory
and run-time. In addition, the requirement of inputting
resolution rates mandates that the user infers appropri-
ate resolution parameters, an unclear process.

3 TREESIM

The goal of TreeSim is to produce high quality simulated
collections of trees. We accomplish this by using the
consensus trees provided by a particular phylogenetic
analysis. Unlike sequence alignments and tree collec-
tions, consensus trees commonly appear in the text of
the paper, along with the number of trees produced by
the analysis and the number of taxa. Increasingly, re-
searchers deposit their consensus trees in TreeBASE [13]
and other databases. Software like TreeRipper [14] can
also be used to extract phylogenetic trees directly from
the text of a paper.

3.1 Combined consensus collection

The hallmark of TreeSim is our novel combined consen-
sus simulation algorithm. Unlike the majority or strict
consensus simulation algorithms, the combined consen-
sus uses both a majority consensus resolution m and
a strict consensus resolution s, where m ≥ s. The end
result is that the tree collections have topological diver-
sity levels that more closely resemble real collections.
Tree collections outputted from phylogenetic search have
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multiple dimensions of similarity, and typically have
non-zero strict and majority consensus rates.

The combined consensus simulation algorithm re-
quires an n-taxa majority consensus tree, and the cor-
responding strict consensus tree. We start by reading
in each tree, calculating the resolutions s and m in the
process. Let S denote the set of bipartitions in the strict
consensus tree, and R be the set of bipartitions from
the majority consensus tree. Note that S ⊆ R. The set
S is assigned to each of the t output trees. Next, each
bipartition b ∈ R − S is assigned to some p percent of
the output trees, where 50 ≤ p ≤ 100.

As an example, consider a 13-taxa tree (10 biparti-
tions) with a majority and strict consensus resolutions
of 90 percent and 50 percent, respectively. The majority
consensus tree has 9 bipartitions (R), and the strict
consensus tree has 5 bipartitions (S). We assign the 5
bipartitions in S to each of the t output trees, while the
remaining 4 bipartitions in R are assigned to p percent of
the t trees, where p ≥ 50. Each tree is then fully resolved
to a binary tree.

3.2 Strengths

The sampling of the strict consensus bipartitions from
the majority consensus bipartitions guarantees that s
percent of the bipartitions in the starting tree are con-
tained in all the output trees. Adding the remaining
bipartitions in R to a majority of the trees guarantee that
there is another dimension of similarity in the output
trees. In addition to the combined consensus, TreeSim
also implements updated forms of the majority and
strict consensus algorithms from unresolverstr and
unresolvermaj so that strict and majority consensus
bipartitions are taken from consensus trees, and not
sampled from a random topology. A benefit of using con-
sensus trees is that the consensus resolution no longer
needs to be specified; it can be calculated directly from
the input tree.

Users can also simulate collections using any of the
described algorithms even if consensus trees are not
available, assuming consensus resolutions are provided.
In this latter case, all algorithms will start from a random
starting tree. Our implementation builds upon and ex-
tends Sul’s and Williams’ work, fixing critical bugs that
allow the algorithms to efficiently and correctly build
arbitrarily large collections of trees.

4 EXPERIMENTAL METHODOLOGY

TreeSim is written C++ and is compiled with g++
4.6.3 with the -03 option, and is accessible from https:
//github.com/suzannejmatthews/treesim. Experiments
were conducted on a 64-bit Intel machine running
Ubuntu Linux 12.04 with two quad-core 1.2Ghz proces-
sors and 32 GB of RAM.

4.1 Description of Datasets
We experiment on three topologically diverse tree collec-
tions obtained from previously published phylogenetic
studies:

• freshwater: A collection of 20,000 trees over 150
freshwater taxa produced from two runs of Bayesian
analysis [15], and consisting of 1, 168 unique biparti-
tions. The collection has strict and majority consen-
sus resolutions of 34.01% and 85.71% respectively.
The strict consensus resolutions for runs 0 and
run 1 were 37.42% and 34.69%, while the majority
consensus resolutions for runs 0 and 1 were 89.12%
and 90.47% respectively.

• angiosperms: A collection of 33,306 trees over 567
angiosperm taxa produced from 12 runs of Bayesian
analysis [16], and consisting of 2, 444 unique bipar-
titions. The strict and majority consensus rates for
this collection are 51.77% and 92.55% respectively.
Each run has distinct strict and majority consensus
rates. The strict consensus rates for each run ranges
between 61.70% and 67.20%. The majority consen-
sus rates for each run ranges between 91.31% and
95.74%.

• insects: An collection of 150,000 trees over 525
insect taxa produced from 5 runs of Parsimony
analysis [17]. A total of 573 unique bipartitions exist
in this dataset. The collection’s strict consensus rate
and majority consensus rate are 90.04% and 99.23%,
respectively. Each run’s consensus rates are identical
to the collection as a whole.

4.2 Performance Metrics
Our goal is to produce tree collections that contain
similar levels of topological diversity to those outputted
by phylogenetic search. To this end, we use popular
bipartition-based methods for assessing topological di-
versity. We first count the average number of unique
bipartitions (internal edges) produced in our simulated
datasets and compare it to the bipartition counts in our
real datasets.

In the next set of experiments, we simulate each run
of our datasets using the different consensus resolution
algorithms. We split each real tree collection into its
respective runs and calculate the majority and strict
consensus tree for each run. A t × t RF distance matrix
is produced for each run, where each cell (i, j) in the
matrix represents the RF distance between trees Ti and
Tj . The RF distance [8] between any pair of trees Ti and
Tj is defined as:

RF (Ti, Tj) =
|B(Ti)−B(Tj)|+ |B(Tj)−B(Ti)|

2

where B(T ) represents the set of bipartitions in tree T .
The normalized RF distance (RF rate) is calculated as

RR(Ti, Tj) =
RF (Ti,Tj)

n−3 . An RF distance (RF rate) of 0
indicates that the two trees are identical, while an RF
distance of n − 3 (RF rate of 1) indicates that the two
trees are maximally dissimilar.
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Simulation Data Sets
Algorithm freshwater angiosperms insects
Random 1, 797, 952.3 12, 491, 544.0 49, 159, 860.6

Strict 496, 916.0 2, 100, 514.0 125, 592
Majority 47, 461.0 221, 954.33 180, 511

Combined 18, 314.0 60, 198.0 2, 521.0

Real Data 1, 168 2, 444 573

TABLE 1
Number of unique bipartitions contained in our simulated

collections contrasted with our biological datasets.

5 RESULTS

We calculate statistics for our real datasets by using
the HashCS [3], HashRF(p, q) [18], and TreeZip [19]
software packages. The strict and majority consensus
trees returned for each biological dataset are used to seed
the simulation algorithms. We confirm that the simulated
datasets had consensus resolutions that either matched
or closely resembled the inputted parameters. We sim-
ulate three collections per algorithm per run and/or
dataset of interest. The numbers reported in the remain-
der of this section represent the average performance of
each algorithm over its three simulated collections.

5.1 Bipartition Diversity
In our first experiment, we are imagining the scenario
when a single strict and/or majority consensus tree was
generated for the entire dataset. Table 1 compares the
average number of unique bipartitions in the collections
produced by our simulation algorithms contrasted with
our real tree collections. Our experiments indicate that
combined consensus simulation algorithm produces up
to 71.6 (49.81) times less unique bipartitions than the
majority (strict) consensus simulation algorithm. Of all
the simulation algorithms, the combined consensus pro-
duces the number of unique bipartitions closest to the
real datasets.

5.2 Topological Diversity
In our second set of experiments, we are imagining a sce-
nario where consensus trees are provided for every run
in a dataset. After partitioning each biological collection
into their respective runs, we use HashCS to determine
the strict and majority consensus trees for each run.
We use the consensus trees, number of output trees,
and number of taxa to seed the combined, strict and
majority consensus tree collection algorithms, producing
simulated runs. For every pair of runs in a particular
dataset, we compute a t × t RF distance matrix for the
trees between the runs, and compute the average RF rate.

We visualize each dataset as a heatmap in Figure 1
through Figure 3. Each cell (i,j) in the heatmap repre-
sents the average RF rate between the trees in run i
compared to the trees in run j. The heatmap is colored to
highlight areas of similarity, ranging from red to purple.
“Hotter” (reddish) cells indicate runs where the trees

Simulation Data Sets
Algorithm freshwater angiosperms insects
Random 7.24 53.65 223.49

Strict 9.49 72.35 807.65
Combined 23.48 199.96 1, 077.35
Majority 26.05 262.44 3, 284.41

TABLE 2
Time (in seconds) required to simulate our biological

datasets.

are closer to each other, while ”cooler” (blue/purple)
cells indicate runs where the trees are further apart.
Each dataset shows very different patterns of similarity,
reflecting their diversity. In this set of experiments, our
goal is to determine which algorithm best captures the
topological characteristics of the real datasets. The ran-
dom algorithm consistently produced RF rates of over
0.99 for each dataset, yielding heatmaps of pure purple.
For brevity, they are not shown here.

For each of our datasets, the combined consensus
algorithm produced tree collections with levels of topo-
logical diversity that most closely resembled the datasets
returned from phylogenetic search. In all cases, the trees
in the simulated collections tend to be more diverse
than those in the real collections. For example, the
angiosperms dataset contains a very diverse set of
trees. Overall, the runs are very similar to each other,
with average RF rates ranging between 0.099 and 0.184.
The trees produced by our combined consensus sim-
ulation algorithm produces trees with RF rates rang-
ing between 0.120 to 0.227. The trees contained in the
insects dataset contained highly similar trees, with
RF rates ranging from 0.035 to 0.037. On this dataset,
the combined consensus algorithm simulated a collection
containing RF rates that varied between 0.032 and 0.044,
reflecting the very high level of similarity of the trees.

The strict and majority consensus algorithms consis-
tently performed poorer than the combined consensus
algorithm in these experiments. The performance of
the strict consensus simulation algorithm varied with
the strict consensus resolution for the collection. For
example, in the freshwater dataset, the strict con-
sensus resolution for each run was under 40 percent.
This relatively low resolution caused the strict consensus
simulation algorithm to do poorly on this dataset. While
it did better with the higher strict consensus rates in
the angiosperms and insects datasets, the trees pro-
duced had a much higher level of topological diversity
than the combined consensus. The majority consensus
algorithm consistently produced runs with average RF
rates that ranged from 0.329 to 0.448.

5.3 Run-time analysis
We perform two run-time studies. In the first, we mea-
sure how quickly each of TreeSim’s simulation algo-
rithms can generate a collection of t trees over n taxa.
One way we imagine TreeSim being used is to simulate
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Fig. 1. Comparison of freshwater dataset with simulated datasets produced by combined, strict, and majority
consensus algorithms (view electronically).

Fig. 2. Comparison of angiosperms dataset with simulated datasets produced by combined, strict, and majority
consensus algorithms (view electronically).

Fig. 3. Comparison of insects dataset with simulated datasets produced by combined, strict, and majority
consensus algorithms (view electronically).

larger collections of trees based on some existing consen-
sus resolution rates. We study the scalability of TreeSim
for this approach in our second set of experiments, where
we study how an increase in the number of trees affects
the time required to simulate each dataset.

Table 2 shows the amount of time it takes to simulate
each of our different biological datasets using the algo-
rithms implemented in TreeSim. It is fastest to simulate
a random collection of trees, requiring between 7.24 sec-
onds and 3.62 minutes on average. The majority simula-
tion algorithm typically takes the longest, requiring 54.7

minutes to simulate the insects dataset. The combined
consensus simulation method in contrast requires only
17.95 minutes to simulate insects, as the number of
bipartitions in R− S for this collection is low.

In our second set of experiments, we artificially in-
crease the number of trees in each real dataset, while
keeping all other parameters in the datasets the same.
Generating a tree collection in this manner allows a sci-
entist to artificially increase the number of trees in a col-
lection, while maintaining a similar level of topological
diversity. Our experimentation shows that a collection of
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100, 000 trees over 567 taxa requires up to 13.21 minutes
to compute. Increasing the number of output trees to
500, 000 drastically increases the run-time to 3.86 hours.
Note that generating 5 separate runs of 100, 000 trees
yields a similarly sized tree collection in only 66 minutes.
This suggests that run-time is closely tied to the number
of output trees.

6 CONCLUSIONS
Scientists lack the habit of publishing tree collections
outputted from phylogenetic analysis, creating a data
vacuum that hinders the development of methods that
can react to the explosive growth of phylogenetic data.
The most popular methods for simulating collections
generate random trees. Yet, the trees returned from phy-
logenetic search are rarely random, and are topologically
similar to each other.

We develop TreeSim, a novel software package that
enables researchers to simulate tree collections based on
on available consensus information. TreeSim’s key nov-
elty is the combined consensus simulation algorithm. Our
experimental results strongly indicate that the combined
consensus algorithm is the best at emulating the levels of
topological diversity found in tree collections returned
from phylogenetic search, far outperforming the other
consensus simulation algorithms and the random ap-
proach. TreeSim’s implementation of the majority and
strict consensus algorithms effectively serve as a replace-
ment for the unresolvermaj and unresolverstr
packages. Future work will concentrate on improving
TreeSim’s ability to simulate weighted trees.

TreeSim requires the majority and strict consensus
trees along with the number of taxa and trees to be
maximally effective. Our experimentation indicates that
for best results, each run of phylogenetic analysis should
be separately simulated. In the absence of consensus
trees, researchers can simulate tree collections based on
published consensus rates. Researchers can easily repro-
duce the collections described here using the consensus
trees posted on TreeSim’s download page.

In the short term, scientists can use the consensus trees
we provide to reproduce our results. In the long term, it
would be beneficial for scientists to provide the majority
and strict consensus trees for each run of phylogenetic
analysis. We are not alone in this call [6], [20], as several
other researchers have discussed the limitations of single
consensus trees.

We caution however that simulation algorithms can
only go so far; in cases where the majority and strict
consensus resolutions are very high, it becomes difficult
to emulate the topological nuances of a tree collection.
Ultimately, there is no substitution for real data, and we
as a community must move forward to enforcing stricter
data sharing requirements.
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