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ABSTRACT
Phylogenetic trees depict the relationships between sets of
organisms sharing a common ancestor. In several recent
court cases, phylogenetic trees have been critical in con-
victing and exonerating suspects of purposefully transmit-
ting the HIV virus. Parallel computing applications such as
MapReduce Speeds Up Robinson-Foulds (MrsRF) make it
possible to compare large collections of phylogenetic trees
efficiently, and can be used to ensure that the searches that
produce these trees properly converged.

In this paper, we describe MrsRF++, an updated ver-
sion of MrsRF that utilizes the Phoenix++ MapReduce en-
gine. The original version of MrsRF was implemented with
Phoenix 1.0, which had a number of critical limitations.
Implementing MrsRF with Phoenix++ overcomes many of
these shortcomings, and increased program modularity. We
ran MrsRF++ on the same two large biological tree sets
described in the original MrsRF paper. Our preliminary re-
sults indicate that using the Phoenix++ MapReduce engine
increases MrsRF’s scalability, a fact that will enable scien-
tists to analyze increasingly large collections of phylogenetic
trees.

Categories and Subject Descriptors
J.3 [Life and Medical Science]: Biology and Genetics;
D.1.3 [Software]: Programming Techniques—Parallel pro-
gramming
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1. INTRODUCTION
A phylogenetic tree depicts the relationships between a set

of organisms (taxa) that share a common ancestor. Appli-
cations of phylogenetic trees include discovering the source
of a virus [15] and concocting antivenins [5] and pharma-
ceuticals [4]. Recently, phylogenetic trees have been used as
evidence in a number of criminal cases [1]. For example, in
2009, Philipe Padieu was convicted of purposely transmit-
ting the HIV virus to multiple women. Prosecutors found
the evidence to prove Padieu guilty by using a phylogenetic
tree to trace the ancestry of the HIV strains found in his
victims to the strain that he carried. For his crimes, he was
sentenced to a total of 250 years in prison [11].

Scientists infer evolutionary trees using phylogenetic search
algorithms, which uses heuristic techniques to search a mas-
sive O(2n−5)!! space of hypothetical trees (“tree-space”) and
return statistically “good” trees. Scientists repeat the search
multiple times to avoid locally optimal solutions. These
analyses can produce hundreds of thousands of equally likely
trees, which scientists summarize into a single tree called the
consensus. They discard the majority of the source trees in
the process.

However, the information discarded has shown to be useful
for a variety of applications [8] [13], especially determining
how successful a phylogenetic search is. If a phylogenetic
search properly converged, then the trees produced from
the multiple runs should be similar to each other [6]. In
the absence of efficient methods for comparing the increas-
ingly large collections of resulting trees, scientists are forced
to assume that their searches converged. If these trees are
accepted as evidence to convict people of crimes, however,
it is critical to ensure that the searches that produced them
converged. Parallel computing has great potential to al-
low scientists to compare phylogenetic trees more efficiently.
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Figure 1: An illustration of bipartitions

Applications like Phoenix [9], for example, which uses the
MapReduce [3] paradigm to allocate work across available
nodes and cores, can significantly expedite the process.

2. RELATED WORK
MapReduce Speeds Up Robinson-Foulds (MrsRF) [8] is

a parallel application capable of comparing large groups of
phylogenetic trees very quickly. Through the use of univer-
sal hashing, it can quickly identify unique bipartitions in a
collection of trees. A bipartition is a split along an internal
edge of a tree that results in two independent sets of taxa.
Consider tree T0 in Figure 1. Since T0 has two internal
edges, it contains two bipartitions: AB|CDE and ABC|DE.

MrsRF uses the Robinson-Foulds (RF) distance [10], the
most popular method of comparing trees. This metric ex-
presses the topological distance between two probable phy-
logenetic trees based on common bipartitions. Consider tree
T1 in Figure 1. T1 also contains two bipartitions: AB|CDE
and ABD|CE. To compute the RF distance between trees
T0 and T1, we use the following equation (where B(T ) is
the set of bipartitions in tree T ):

RF (T0, T1) =
|B(T0)−B(T1)|+ |B(T1)−B(T0)|

2

Notice that T0 and T1 share the bipartition AB|CDE but
not ABD|CE or ABC|DE. Thus the RF distance between
T0 and T1 is 1. To compare a collection of trees, MrsRF
calculates a t× t RF matrix, where the value in cell (i,j) of
the resulting matrix represents the distance between trees i
and j.

MrsRF uses MapReduce [3], a popular programming paradigm
designed to process large data sets. The framework allows
programmers to easily create parallel computing applica-
tions. The programmer need only write a map() and re-

duce() function, and the rest of the process is automated.
Due to the (key, value) nature of its data model, MapReduce
is ideal for parallelizing algorithms that use hashing.

MrsRF is based on Phoenix [9], an open-source, shared
memory implementation of MapReduce. The Phoenix soft-
ware dynamically schedules tasks across available processors
to maximize throughput and reduce overhead related to data
communication and task spawning. Compared to other ap-
proaches (such as Hadoop [2]), implementing MrsRF with
Phoenix led to major speed ups [8]. Phoenix does, how-
ever, have limitations, including its inefficient combiner im-
plementation, poor task overhead amortization, and uniform
intermediate storage of key-value pairs in hash tables [14].
These flaws cause the software to be inefficient for certain
workloads.

Many of these limitations have been addressed in Phoenix++
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[14], the most recent version of the software. Phoenix++ of-
fers increased modularity, is written in C++, and uses tem-
plates to statically inline code without incurring significant
performance penalties. It boasts increased scalability and
is, on average, 4.7 times faster than its predecessor [14].

In order to ensure that the MrsRF algorithm can continue
to keep pace with the growth of phylogenetic data, we wrote
MrsRF++, an updated version of MrsRF that takes advan-
tage of the Phoenix++ MapReduce library. MrsRF++ is
written in C++, a change which enabled us to increase mod-
ularity and eliminate many function calls without perfor-
mance penalties. For example while the original MrsRF was
forced to run the subprogram HashBase as an executable,
we can increase efficiency by integrating it directly into the
MrsRF++ code.

3. APPROACH
MrsRF begins by partitioning the data over N nodes, each

of which is responsible for computing an RF submatrix over
the trees assigned to it. Each node then computes its as-
signed submatrix using independent instances of MapRe-
duce. Each core executes two independent runs of MapRe-
duce, which we refer to as Phase 1 and Phase 2. In the ex-
amples to follow, we illustrate how the algorithm creates the
submatrix {T0, T1}×{T2, T3} using two cores. In Phase 1,
the program creates a global hashtable of unique bipartitions
and the trees that contain them. In Figure 2, File 1’s trees
T0 and T1 share bipartition AB|CDE while File 2’s trees T2
and T3 share bipartition ABC|DE. The map() function ex-
tracts the bipartitions from each tree and emits them along
with their tree identifier (TID), as the (key, value) interme-
diates for Phase 1. The combiner groups common TIDs that
belong to the same bipartitions, forming (key, list(value))
pairs. The reduce() function then combines the informa-
tion together, resulting in the set of unique bipartitions and
the TIDs from both files that contain them. In our example,



T0 and T1 from File 1 and T2 from File 2 are combined into
a single list sharing the bipartition AB|CDE.

In Phase 2, the program creates similarity matrices and
computes the final RF distance matrix. In Figure 3, the
input to the map() function is the set of unique bipartitions
and their associated TIDs. This set is split into pieces, which
each instance of map() uses to construct a local similarity
matrix. If a set of trees shares a common bipartition, map()
increments the value in the appropriate matrix box by 1.
In Figure 3, cell (T0, T2) is incremented by 1 because both
T0 and T1 share bipartition AB|CDE. Next, the reduce()

function combines each row of each similarity matrix and
adds up the corresponding boxes. Since the independent
instances of the map() function updated the cell (T0, T2)
twice, the similarity matrix produced by reduce() contains
the value 2. Lastly, the similarity matrix is used to compute
the RF distance matrix.

4. PRELIMINARY RESULTS
We used two biological data sets to test the performance

of MrsRF++: a collection of 150 taxa and 20,000 trees [7]
and a larger collection over 567 angiosperm taxa and 33,306
trees [12]. We note that these are the same two biologi-
cal datasets originally used to ascertain the performance of
MrsRF. The 150 taxa dataset contains 1, 128 unique bipar-
titions, while the 567 taxa dataset contains 2, 444 unique
bipartitions.

All of our experiments were run on a 64-bit machine with
two quad-core processors (8 total cores) and 32 GB of RAM.
Our single node cluster runs Ubuntu Linux 12.04. Both
MrsRF++ and MrsRF were compiled with gcc 4.6.3 and
the -O3 compiler flag. We ran each program three times on
both datasets over 1, 2, 4, and 8 cores. Running time is
reported as the average over all three runs. We calculated
speedup with the equation

SpeedUp =
T (1 core)

T (n cores)

where T (1 core) is the execution time of MrsRF++ on a
single core, and T (n cores) is the execution time of MrsRF++

when run over n cores.
We first compared the performance of MrsRF++ to its

predecessor, MrsRF. We ran MrsRF and MrsRF++ on both
biological datasets over 1, 2, 4, and 8 cores. In all these
cases, MrsRF++ is only slightly faster than MrsRF. For
example, when run on the 150 taxa dataset, MrsRF took
37.61 seconds on 1 core, while MrsRF++ took 37.28. When
run with 8 cores on this dataset, MrsRF took 9.86 seconds,
while MrsRF++ took 9.32 seconds. On the 567 taxa dataset,
MrsRF took 401.93 seconds on 1 core, while MrsRF++ took
397.28 seconds. On 8 cores for this dataset, MrsRF took
62.81 seconds, while MrsRF++ took 51.44 seconds. Since
MrsRF++ has the fastest serial implementation, all speedups
reported use MrsRF++’s time on a single core.

While Phoenix++ is up to 4.7 times faster than its prede-
cessor, we believe those performance gains are largely lost in
MrsRF++ due to the unique nature of its workflow. Most
applications of MapReduce have a larger input dataset which
gets processed and reduced to a smaller output. However,
MrsRF and MrsRF++ produce a much larger output (the
t× t RF matrix) than the input set of t trees.

4.1 Overall Performance
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Figure 4: MrsRF++ speedups on 2, 4, and 8 cores.
Speedup is computed with respect to MrsRF++ on
1 core.

In an ideal scenario, when MrsRF++ is run on n cores, it
will result in a speedup of n. Figure 4 shows the overall per-
formance of MrsRF++ on n cores with respect to MrsRF++

on 1 core. The 150 taxa dataset took on average 37.28 sec-
onds to run on 1 core, and 9.32 seconds when run on 8 cores.
The 567 taxa dataset took on average 397.28 seconds on 1
core, and 59.99 seconds when run on 8 cores.

On the 150 taxa 20, 000 trees dataset, MrsRF++ achieves
a near perfect speedup of 1.91 on 2 cores. When we ran
MrsRF++ on this dataset over 4 and 8 cores, we achieved
speedups of 3.34 and 4.00 respectively. We hypothesize that
the reduction of performance over higher numbers of cores
is due to the fact that there simply is not enough data to
fully utilize 4 and 8 cores. On 4 cores, MrsRF++ takes on
average 11.18 seconds to compute the RF matrix; in other
words, running MrsRF++ on 8 cores on this dataset results
in average improvement of only 1.86 seconds.

Our experimentation on the larger, 567 taxa and 33, 306
tree dataset lends credence to this hypothesis. Once again,
MrsRF++ achieves near-perfect speedup of 1.95 on 2 cores.
Since this dataset is larger, speedups increase to 3.68 and
6.62 on 4 and 8 cores. While it took MrsRF++ on average
107.81 seconds to process this dataset on 4 cores, running
time was reduced to 59.99 seconds on 8 cores.

4.2 Phase 1 and 2 Performance
To investigate potential bottlenecks in the performance of

MrsRF++ we also conducted a separate analysis of Phase 1
and Phase 2. Figure 5 shows the performance on Phase 1 of
MrsRF++ on the 150 and 567 taxa datasets. In general, we
obtained fairly good speedups for Phase 1. On the 150 taxa
dataset, MrsRF++ took 8.12 seconds to execute on 1 core.
Speedup increased from 1.92 on 2 cores to 3.3 and 5.65 on 4
and 8 cores respectively. This corresponds to running times
of 4.22, 2.46, and 1.44 seconds, respectively, for 2, 4 and 8
cores.

On the 567 taxa dataset, MrsRF++ took 54.88 seconds
during Phase 1 on a single core. For 2 cores, we obtained
speedup of 1.92 (28.57 seconds), which increased to speedups
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Figure 5: Phase 1 speedups on 2, 4, and 8 cores.
Speedup is computed with respect to MrsRF++
Phase 1 on 1 core.

of 3.52 (28.57 seconds) and 6.11 (8.98 seconds) on 4 and 8
cores respectively. For both datasets, the majority of the
time is spent on the extraction of bipartitions from the
source trees. A reduction in the time needed to perform
this step will likely improve the speedups gained by Phase
1 of MrsRF++.

Figure 6 illustrates the Phase 2 performance of MrsRF++

over our two biological datasets. For 150 taxa, Phase 2 of
MrsRF++ takes 28.98 seconds on 1 core. On 2 cores, we
obtain a speedup of 1.91 (15.15 seconds), which increases to
3.43 (8.45 seconds) and 3.89 (7.44 seconds) on 4 and 8 cores,
respectively. We strongly believe this decrease in speedup on
this dataset is due to the algorithm lacking enough data to
fully take advantage of 8 cores. For Phase 2 of the algorithm,
“data” is the number of unique bipartitions contained in the
source set of trees. For the 150 taxa set, there are only 1, 128
unique bipartitions over 20, 000 trees.

Our results on the 567 taxa datasets support this hypoth-
esis. This larger dataset has 2, 444 unique bipartitions over
33, 306 trees. On 1 core, Phase 2 of MrsRF++ takes 342.0
seconds. When we increase the number of cores to 2, we
gain a near-perfect speedup of 1.96 (174.14 seconds). In-
creasing the number of cores again to 4 results in a speedup
of 3.74 (91.48 seconds). However, once we get to 8 cores,
we encounter some performance degradation, as speedup is
reduced to 6.86 (49.82 seconds). We believe this is again
due to the algorithm having too few bipartitions to process
on 8 cores.

5. CONCLUSIONS
In this paper, we introduce MrsRF++, an updated im-

plementation of the MrsRF algorithm for comparing large
groups of phylogenetic trees. As phylogenetic tree collec-
tions continue to grow, they become increasingly computa-
tionally expensive to compare. To keep pace with changing
times, we performed a critical update to the MrsRF software
to utilize the Phoenix++ MapReduce engine. Phoenix++

addresses many of the shortcomings of its predecessor, Phoenix
1.0, allowing for the creation of more modular and scalable
code.
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Figure 6: Phase 2 speedups on 2, 4, and 8 cores.
Speedup is computed with respect to MrsRF++
Phase 2 on 1 core.

We tested MrsRF++ on the two biological datasets orig-
inally used to benchmark MrsRF. Our preliminary results
indicate that MrsRF++ and Phoenix++ appear to more effi-
ciently compare large sets of phylogenetic trees. Our results
suggest that MrsRF++ is not only faster than MrsRF, but
achieves better scalability than its predecessor. While our
implementation experienced performance degradation on 8
cores, we believe this is due to a lack of data, and not any
fault on the part of the program. We hypothesize that as
we obtain and benchmark larger datasets, MrsRF++’s core
utilization on 4 and 8 cores will only continue to improve.

For the future, we plan on fine-tuning the performance
of MrsRF++. Our results are still very preliminary; more
extensive analysis is needed to fully explore the utility of
MrsRF++. To this end, we plan on benchmarking MrsRF++

over larger sets of trees and on a large multi-node cluster.
Like its predecessor, MrsRF++ is currently designed for un-
weighted, binary trees. In our next iteration, we also plan on
extending MrsRF++’s functionality to include more diverse
collections of trees.
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